高耐圧インテリジェントパワーデバイス
アプリケーションノート（SSOP30）
目次

1. 対象製品 ... 3
 1.1. 製品リスト .. 3

2. SSOP30 パッケージ寸法/現品表示 .. 5
 2.1. パッケージ外形寸法 ... 5
 2.2. 現品表示 ... 6
 2.3. パッド寸法図（参考） ... 6
 2.4. 実装方法 ... 7
 2.5. 放熱板を取り付ける場合 ... 8

3. 端子説明 .. 10
 3.1. 製品の端子配置 .. 10

4. 機能説明、使用上の注意 ... 11
 4.1. 保護機能 ... 11
 4.2. V_{REG}電源 ... 14
 4.3. 電源投入シーケンス ... 15
 4.4. 損失計算 .. 15

5. 応用回路例 .. 16
 5.1. 応用回路例 .. 16

製品取り扱い上のお願い ... 19
1. 対象製品
1.1. 製品リスト

<table>
<thead>
<tr>
<th>製品名</th>
<th>定格</th>
<th>6 入力</th>
<th>3 相分配・PWM 回路</th>
<th>レベルシフト&ドライバー</th>
<th>過電流保護</th>
<th>過熱保護</th>
<th>減電圧保護</th>
<th>通電方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPD4204F</td>
<td>600V/2.5A</td>
<td>○</td>
<td>－</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>180 度（※）</td>
</tr>
<tr>
<td>TPD4206F</td>
<td>500V/2.5A</td>
<td>○</td>
<td>－</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>180 度（※）</td>
</tr>
<tr>
<td>TPD4207F</td>
<td>600V/5A</td>
<td>○</td>
<td>－</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>180 度（※）</td>
</tr>
</tbody>
</table>

※：組み合わせるマイコンやコントローラーICにより制御が可能です。

正弦波駆動（180 度通電）タイプ
当社マイコン及びモーターコントローラーIC（次頁当社製品例参照）との組み合わせにより モーターの低騒音・低振動を実現した正弦波駆動（180 度通電）が可能です。

![製品回路ブロック図](image)

図 1.1 正弦波駆動（180 度通電）製品回路ブロック図
表 1.2.1 コントローラーICリスト 正弦波駆動タイプ(製品例)

<table>
<thead>
<tr>
<th>製品名</th>
<th>PKG</th>
<th>Vcc / Io</th>
<th>位置検出機能</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>自動進角制御</td>
<td>遠回路内蔵</td>
</tr>
<tr>
<td>TB6551FAG</td>
<td>SSOP24</td>
<td>12V/2mA</td>
<td>ホールIC</td>
<td>外部設定</td>
</tr>
<tr>
<td>TB6556FG</td>
<td>SSOP30</td>
<td>12V/2mA</td>
<td>ホールIC</td>
<td>○</td>
</tr>
<tr>
<td>TB6584FNG/AFNG</td>
<td>SSOP30</td>
<td>18V/2mA</td>
<td>ホール素子/IC</td>
<td>○</td>
</tr>
<tr>
<td>TB6634FNG</td>
<td>SSOP30</td>
<td>18V/2mA</td>
<td>ホール素子/IC</td>
<td>○</td>
</tr>
<tr>
<td>TB6631FNG</td>
<td>SSOP30</td>
<td>18V/2mA</td>
<td>ホール素子/IC</td>
<td>○※1</td>
</tr>
<tr>
<td>TC78B041FNG</td>
<td>SSOP30</td>
<td>18V/2mA</td>
<td>ホール素子/IC</td>
<td>○※2</td>
</tr>
<tr>
<td>TC78B042FTG</td>
<td>QFN32</td>
<td>18V/2mA</td>
<td>ホール素子/IC</td>
<td>○※2</td>
</tr>
</tbody>
</table>

※1: FG信号の周波数による内部自動進角制御機能
※2: InPAC(Intelligent Phase Control、当社独自の自動位相調整機能)

表 1.2.2 マイコンリスト 正弦波駆動タイプ(製品例)

<table>
<thead>
<tr>
<th>製品名</th>
<th>パッケージ</th>
<th>ROMサイズ(Bytes)</th>
<th>RAMサイズ(Bytes)</th>
<th>最大動作周波数(MHz)</th>
<th>励作電圧(V)最小</th>
<th>励作電圧(V)最大</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMPM375FSDMG</td>
<td>SSOP30</td>
<td>64K</td>
<td>4K</td>
<td>-</td>
<td>4.5</td>
<td>5.5</td>
</tr>
<tr>
<td>TMPM37AFSQG</td>
<td>VQFN32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TMPM372FWUG</td>
<td>LQFP64</td>
<td>128K</td>
<td>6K</td>
<td>(a) 80</td>
<td>4.5</td>
<td>5.5</td>
</tr>
<tr>
<td>TMPM373FWDUG</td>
<td>LQFP48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TMPM374FWUG</td>
<td>LQFP44</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TMPM370FYDFG</td>
<td>QFP100</td>
<td>256K</td>
<td>10K</td>
<td>80</td>
<td>4.5</td>
<td>5.5</td>
</tr>
<tr>
<td>TMPM370FYFG</td>
<td>LQFP100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TMPM376FDDFG</td>
<td>QFP100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TMPM376FDFG</td>
<td>LQFP100</td>
<td>512K</td>
<td>32K</td>
<td>80</td>
<td>4.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>
2. SSOP30 パッケージ寸法/現品表示

SSOP30 パッケージは、高耐圧端子と制御端子をパッケージ両側に分離することにより基板配線の容易化を実現しています。また、パッケージ厚の薄型化およびパッケージの小型化を実現しています。

2.1. パッケージ外形寸法

外形図

![外形図](image-url)

図 2.1 SSOP30 パッケージ 外形寸法
2.2. 現品表示

![SSOP30パッケージ図](image)

図 2.2 SSOP30 パッケージ 現品表示

2.3. パッド寸法図（参考）

(単位:mm)

![SSOP30パッド寸法図](image)

図 2.3 SSOP30 パッド寸法図（参考）
2.4. 実装方法
実装条件対応表

表 2.4 実装条件対応表

<table>
<thead>
<tr>
<th></th>
<th>リフロー</th>
<th>フロー</th>
<th>はんだごて</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 回まで対応可</td>
<td>対応していません。</td>
<td>1 回のみ対応可</td>
<td></td>
</tr>
</tbody>
</table>

① リフローの場合
ピーク温度：最大 260 ℃/瞬時
本加熱温度／時間：230 ℃以上／30～50 秒
プリヒート温度／時間：180～190 ℃／60～120 秒

注：実装耐熱条件における温度は、パッケージ表面温度を基準としております。
耐熱温度プロファイルを図 2.4 に示します。
本プロファイルはデバイス耐熱保証の最大値にて記載しています。
プリヒート温度／加熱温度は、図 2.4 の範囲内で、使用するはんだペーストの種類等に合わせた最適温度に設定してください。

本パッケージは防湿梱包品ですので、開封から最終リフロー完了までは、30 ℃/60 %RH にて 168 h 以内に実施ください。

図 2.4 耐熱温度プロファイルの例

② フローの場合
はんだフロー実装には対応しておりません。
③ はんだごての場合
加熱方法：はんだごて加熱（リード先端部）
加熱条件：こて先温度 400 ℃以下 3 秒以内
加熱回数：1 端子あたり 1 回のみ

● その他
基板実装時は十分なはんだ接合強度を得るために、十分確認の上、実装をお願いします。
2.5. 放熱板を取り付ける場合
周囲温度や周辺部品の発熱および素子自身の発熱により放熱板を必要とする場合は下記のように取り付けてください。

● 放熱板取り付け例
① 絶縁シート使用例

表 2.5.1 部品例

<table>
<thead>
<tr>
<th>部品</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>絶縁シート</td>
<td>t=0.5mm</td>
</tr>
<tr>
<td>高さ固定用スペーサー</td>
<td>t=2.5mm</td>
</tr>
</tbody>
</table>

図 2.5.1 放熱板取り付け例（絶縁シート使用例）

② 樹脂やゲル状の絶縁物使用例

図 2.5.2 放熱板取り付け例（樹脂やゲル状の絶縁物使用例）

③ その他放熱板取り付け方法例

図 2.5.3 はんだ付け
図 2.5.4 プッシュピン
図 2.5.5 接着貼り付け
はんだ付けにて放熱板を取り付けた評価用基板でのケース温度を測定した結果を参考に示します。
評価条件: VBB=280V, VCC=15V, モーター回転数=一定(1500rpm), fc=16.5kHz, Ta=25℃
当社評価用基板（TPD4204F+TB6551FAG）、放熱板（3種類）
ファンモーターの負荷を可変し、ケース温度を測定。

図 2.5.6 評価用基板と温度測定位置

表 2.5.2 放熱板の型名例

<table>
<thead>
<tr>
<th>TYPE-A</th>
<th>TYPE-B</th>
<th>TYPE-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>三協サーモテック(株)製
型名: 20FOSH036-L36-WFL-B
縦:36×横:36×高:20mm
表面積:115cm²</td>
<td>三協サーモテック(株)製
型名: 20FOSH036-L64-WFL-B
縦:36×横:64×高:20mm
表面積:202cm²</td>
<td>三協サーモテック(株)製
型名: 16FOSH064-L36-WFL-B
縦:36×横:64×高:16mm
表面積:163cm²</td>
</tr>
</tbody>
</table>

図 2.5.7 各種放熱板での入力電力（Pi）-ΔTc 及び 電力損失-ΔTc
● 基板への取り付け方
SSOP30 パッケージを放熱板と基板で挟むように取り付ける場合、SSPO30 パッケージの静荷重耐量は 10N です。それを超えるような静荷重にならないよう取り付けてください。また、デバイスに対し荷重が不均一にかかったり、右図のように実装基板が曲がるほどネジを締め付けるとデバイスに歪みを与え、ダメージが発生します。スペーサーを挟むなど基板が曲がらないように放熱板を取り付けてください。

● 平坦度
放熱板のデバイスを取り付ける面は十分滑らかでなければいけません。放熱板の反りや凹凸が大きく、プレスバリや切削クズなどの異物が含まれると、極端な場合にはデバイスを破壊させることができます。また、パッケージの上面と放熱板を完全に固定した場合、発熱等により過大な応力が掛かり素子が破損する場合があります。上面に放熱板など硬いものを固定する場合は、ソフト素材の絶縁シート、熱伝導ゲル等の緩衝材を必ず介在させて下さい。

3. 端子説明
3.1. 製品の端子配置

<table>
<thead>
<tr>
<th>端子番号</th>
<th>端子記号</th>
<th>端子の説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>未使用端子。内部のチップには接続されていません。</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>未使用端子。内部のチップには接続されていません。</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>未使用端子。内部のチップには接続されていません。</td>
</tr>
<tr>
<td>4</td>
<td>DIAG</td>
<td>オープンドライプ構造の診断出力端子で、抵抗でプルアップする。異常時（過電流、過熱、減電圧保護検出時）にオープンドライプ構造の診断出力端子をオンします。その場合、DIAG 出力を Low レベルにします。</td>
</tr>
<tr>
<td>5</td>
<td>VCC</td>
<td>制御電源端子。 (15V 標準)</td>
</tr>
<tr>
<td>6</td>
<td>VREG</td>
<td>7V レギュレーター出力端子。</td>
</tr>
<tr>
<td>7</td>
<td>SD</td>
<td>外部保護入力端子。("L"アクティブ、入力ヒステリシスなし)</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>接地端子。</td>
</tr>
<tr>
<td>9</td>
<td>RS</td>
<td>過電流検出端子。</td>
</tr>
<tr>
<td>10</td>
<td>LW</td>
<td>W 相ローサイド側の MOSFET の制御端子。1.5V 以下で OFF、2.5V 以上で ON します。</td>
</tr>
<tr>
<td>11</td>
<td>LV</td>
<td>V 相ローサイド側の MOSFET の制御端子。1.5V 以下で OFF、2.5V 以上で ON します。</td>
</tr>
<tr>
<td>12</td>
<td>LU</td>
<td>U 相ローサイド側の MOSFET の制御端子。1.5V 以下で OFF、2.5V 以上で ON します。</td>
</tr>
<tr>
<td>13</td>
<td>HW</td>
<td>W 相ハイサイド側の MOSFET の制御端子。1.5V 以下で OFF、2.5V 以上で ON します。</td>
</tr>
<tr>
<td>14</td>
<td>HV</td>
<td>V 相ハイサイド側の MOSFET の制御端子。1.5V 以下で OFF、2.5V 以上で ON します。</td>
</tr>
<tr>
<td>15</td>
<td>HU</td>
<td>U 相ハイサイド側の MOSFET の制御端子。1.5V 以下で OFF、2.5V 以上で ON します。</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>接地端子。</td>
</tr>
<tr>
<td>17</td>
<td>NC</td>
<td>未使用端子。内部のチップには接続されていません。</td>
</tr>
<tr>
<td>18</td>
<td>NC</td>
<td>未使用端子。内部のチップには接続されていません。</td>
</tr>
<tr>
<td>19</td>
<td>NC</td>
<td>未使用端子。内部のチップには接続されていません。</td>
</tr>
<tr>
<td>20</td>
<td>IS3</td>
<td>W 相 MOSFET ソース端子。</td>
</tr>
<tr>
<td>21</td>
<td>W</td>
<td>W 相出力端子。</td>
</tr>
<tr>
<td>22</td>
<td>BSW</td>
<td>W 相ブートストラップコンデンサー接続端子。</td>
</tr>
</tbody>
</table>
高耐圧インテリジェントパワーデバイス（SSOP30）

Application Note

<table>
<thead>
<tr>
<th>ビン</th>
<th>効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>VBB</td>
</tr>
<tr>
<td>24</td>
<td>VBB</td>
</tr>
<tr>
<td>25</td>
<td>BSV</td>
</tr>
<tr>
<td>26</td>
<td>V</td>
</tr>
<tr>
<td>27</td>
<td>IS2</td>
</tr>
<tr>
<td>28</td>
<td>IS1</td>
</tr>
<tr>
<td>29</td>
<td>BSU</td>
</tr>
<tr>
<td>30</td>
<td>U</td>
</tr>
</tbody>
</table>

※NCピンは未使用端子となり、内部のチップには接続されていませんので、電気的特性に影響はありませんが、基板にはんだ付け頂くことを推奨いたします。

4. 機能説明、使用上の注意
4.1. 保護機能

電源電圧低下保護
VCC電圧およびVBS電圧が低下し、MOSFETが非飽和領域で動作するのを防止する目的で電源電圧低下保護機能を内蔵しています。VCC電圧が低下してVCCUVD（=11V標準）に達すると、入力に関わらず全MOSFET出力をシャットダウンします。この保護機能はヒステリシスを持ち、シャットダウン電圧よりも0.5V高いVCCUVR（=11.5V標準）になると自動的に復帰して、再び入力に従ってMOSFETがONします。VCC電源電圧保護動作時には、DIAG出力が反転しますが、VCC電圧値が7V以下の場合、DIAG出力が反転しない場合があります（DIAGが反転しない場合でも、VCC電圧が11V以下では、全MOSFET出力はシャットダウンとなります）。また、VBS電圧が低下してVBSUVD（=10V標準）に達すると、ハイサイドMOSFET出力をシャットダウンし、シャットダウン電圧よりも0.5V高いVBSUVR（=10.5V標準）になると、再び制御信号に従ってMOSFETがONします。尚、VBS減電圧保護時は、DIAG出力は反転しません。

図4.1.1 ローサイド動作時（VCC）
過電流保護
起動加速時およびモーターローターロック時に過大な電流が流れる状態から本ICを保護する目的で過電流保護回路を内蔵しています。過電流保護機能は、RS端子に接続される電流検出抵抗に発生する電圧を検出し、これがVR (= 0.5 V 標準)を超えると遅延時間(3 μs 標準)を経てMOSFET出力をいったんシャットダウンし電流の増加を抑えます。シャットダウン状態の解除は全相Vin＝“L”でなされます。

過電流保護抵抗の設定
Io = VR ÷ R1
VR：過電流保護動作電圧，Io：過電流保護設定値，R1：過電流保護抵抗
表 4.1 電流制限動作電圧の規格値（電気的特性より抜粋） 単位：V

<table>
<thead>
<tr>
<th>項目</th>
<th>記号</th>
<th>最小</th>
<th>標準</th>
<th>最大</th>
</tr>
</thead>
<tbody>
<tr>
<td>過電流保護動作電圧</td>
<td>V_{R}</td>
<td>0.46</td>
<td>0.5</td>
<td>0.54</td>
</tr>
</tbody>
</table>

過電流保護遅延時間の設定

過電流保護抵抗に発生するノイズによる過電流保護回路の誤動作防止のため、図 4.1.4 に示すフィルター回路を内蔵しています。電流制限値を越える電流を検出してから出力 MOSFET をシャットダウンするまでの電流制限遅延時間は、このフィルター回路によるフィルター時間（不感時間）と制御回路の遅延時間の和で決定します。電流制限遅延時間 D_t = フィルター時間（不感時間） + 制御回路遅延時間

電流制限抵抗に発生するノイズレベルが大きく、フィルター時間が不足する場合は外付けフィルターを追加して下さい。但し、外付けフィルターを追加すると MOSFET がオフするまでの時間（電流制限遅延時間）が増加するためご注意ください。

表 4.2 電流制限動作遅延時間の規格値（電気的特性より抜粋） 単位：μs

<table>
<thead>
<tr>
<th>項目</th>
<th>記号</th>
<th>最小</th>
<th>標準</th>
<th>最大</th>
</tr>
</thead>
<tbody>
<tr>
<td>電流制限動作遅延時間</td>
<td>D_t</td>
<td>1.5</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

図 4.1.4 RS 端子内部回路図

図 4.1.5 過電流保護動作時

過熱保護

本製品の温度が過度に上昇した異常状態から保護する目的で過熱保護回路を内蔵しております。外部的な要因、あるいは、内部の発熱によって設定値に達すると、入力に関わらず全 MOSFET 出力をシャットダウンします。この保護機能はヒステリシス ΔTSD （= 50 ℃ 標準）を持ち、ドライバー IC の温度が TSD - ΔTSD 以下に下降すると自動的に復帰して、再び入力に従って MOSFET が ON します。

なお、温度検出箇所はドライバー IC の 1 箇所なので、例えば MOSFET による発熱の場合、発熱源となる MOSFET と検出位置が異なるため、シャットダウンまでの時間差が生じ、過熱保護回路が動作した時点で、既に MOSFET の温度は設定温度以上に上昇していることがあります。
図 4.1.6 ローサイド動作時（過熱保護）

図 4.1.7 ハイサイド動作時（過熱保護）

SD 機能
外部回路にて、過電流などを検知し“L”信号を SD 端子に入力することで遅延時間（2 μs 標準）を経て、全MOSFET 出力をシャットダウンします。解除は、全相 Vin＝“L”でなされます。

4.2. VREG 電源
VREG 端子に出力される電源は、VCC 電源より生成されます。VREG 電源は IC 内部回路の電源となるだけでなく、外付けコントローラー IC やその他周辺 IC の電源として使用することが可能です。
発振防止として、VREG 端子にはコンデンサーを付加してください。容量は 0.1μF～1μF 程度を推奨致します。
IREG が増加すると、VREG が発振しやすくなりますので、実際の使用環境にて発振がある場合は容量を可変してチューニングをお願い致します。VREG 電源の出力電圧値は下表のようになります。

© 2020 Toshiba Electronic Devices & Storage Corporation
表 4.2 レギュレータ電圧(条件: VCC=15V, I_REG=30mA) 単位: V

<table>
<thead>
<tr>
<th></th>
<th>最小</th>
<th>標準</th>
<th>最大</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>6.5</td>
<td>7</td>
<td>7.5</td>
</tr>
</tbody>
</table>

4.3.電源投入シーケンス

VBB電源、VCC電源、制御信号の立ち上げ／下げに関して、下記の内容は推奨しておりません。
電源立ち上げ時：VBB／制御信号が立ち上っている状態にて最後にVCC電圧を立上げる場合
電源立ち下げ時：最初にVCC電源を立上げる場合

4.3.1 立ち上げ時

<table>
<thead>
<tr>
<th>電源立ち上げ順</th>
<th>○/×</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC VBB 制御入力</td>
<td>○</td>
</tr>
<tr>
<td>VCC 制御入力 VBB</td>
<td>○</td>
</tr>
<tr>
<td>VBB VCC 制御入力</td>
<td>○</td>
</tr>
<tr>
<td>制御入力 VCC VBB</td>
<td>×</td>
</tr>
<tr>
<td>制御入力 VBB VCC</td>
<td>×</td>
</tr>
</tbody>
</table>

○：推奨、×：非推奨

電源を立ち上げる場合でもモーターが回転中にVBBラインをリレーなどで切り離してしまうような場合にはVBB電源への電流回生ルートが遮断され、出力部（MOSFET）が破壊する恐れがありますので十分ご注意ください。

4.3.2 立ち下げ時

<table>
<thead>
<tr>
<th>電源立て下げ順</th>
<th>○/×</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC VBB 制御入力</td>
<td>×</td>
</tr>
<tr>
<td>VCC 制御入力 VBB</td>
<td>○</td>
</tr>
<tr>
<td>VBB VCC 制御入力</td>
<td>○</td>
</tr>
<tr>
<td>制御入力 VCC VBB</td>
<td>○</td>
</tr>
<tr>
<td>制御入力 VBB VCC</td>
<td>○</td>
</tr>
</tbody>
</table>

4.4.損失計算

出力電流波形が正弦波の場合の発生損失の計算式を以下に示します。

P = P_on + P_t + P_BB + P_CC

(1) 導通損失 : P_on

P_on = P_H + P_L + P_D (W)

・ハイサイドMOSFET 導通損失 : P_H = I^2 × R_onH × (1/8 + D/3π × COSθ) × 3
・ローサイドMOSFET 導通損失 : P_L = I^2 × R_onL × (1/8 + D/3π × COSθ) × 3
・還流ダイオード導通損失 : P_D = I × V_F × (1/8 – D/3π × COSθ) × 6

I_D = モーター巻線電流(ピーク) (A)
R_onH/R_onL = 出力MOSFETオン抵抗 (Ω)
V_F = FRD 順方向電圧降下 (V)
D = PWM デューティ (ハイサイドMOSFET ON デューティ)
θ = 力率

(2) MOSFETスイッチング損失 : P_t

P_t = (W_on + W_off) × f_C/n × 6 (W)

・W_on = ターンオンロス(μJ/pulse)
・W_off = ターンオフロス(μJ/pulse)
・f_C = PWM スイッチング周波数 (Hz)
(3)V_{BB} 発生損失：P_{BB}
 \[P_{BB} = V_{BB} \times I_{BB} \text{(W)} \]
 \[I_{BB} = V_{BB} \] 消費電流(A)※全相 Vin=“L” 時の消費電流

(4)V_{CC} 定常損失：P_{CC}
 \[P_{CC} = V_{CC} \times I_{CC} \text{(W)} \]
 \[I_{CC} = V_{CC} \] 消費電流(A)※通常動作時の消費電流

図 4.4 損失計算モーター電流波形イメージ

5. 応用回路例
5.1 応用回路例

図 5.1 応用回路例（本製品で過電流保護機能を動作させる場合）
図 5.2 応用回路例（制御 IC またはマイコンで過電流保護機能を動作させる場合）

標準的な外付け部品を下表に示します。

<table>
<thead>
<tr>
<th>部品</th>
<th>参考値</th>
<th>目的</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3</td>
<td>25 V/2.2 µF</td>
<td>ブートストラップ用</td>
<td>(注 1)</td>
</tr>
<tr>
<td>C4</td>
<td>25 V/10 µF</td>
<td>VCC電源安定用</td>
<td>(注 2)</td>
</tr>
<tr>
<td>C5</td>
<td>25 V/0.1 µF</td>
<td>VCCサージ吸収用</td>
<td>(注 2)</td>
</tr>
<tr>
<td>C6</td>
<td>25 V/1 µF</td>
<td>VREG電源安定用</td>
<td>(注 2)</td>
</tr>
<tr>
<td>C7</td>
<td>25 V/1000 pF</td>
<td>VREGサージ吸収用</td>
<td>(注 2)</td>
</tr>
<tr>
<td>R1</td>
<td>5.1 kΩ</td>
<td>DIAG端子プルアップ抵抗</td>
<td>(注 3)</td>
</tr>
<tr>
<td>R2</td>
<td>10 kΩ</td>
<td>SD端子プルアップ抵抗</td>
<td>(注 4)</td>
</tr>
<tr>
<td>R3</td>
<td>0.35 Ω±1 % (1 W)</td>
<td>過電流検出用</td>
<td>(注 5)</td>
</tr>
</tbody>
</table>
注１：ブートストラップコンデンサーの必要容量はモーターのドライブ条件によって異なります。また、コンデンサーのストレス電圧はV_{CC}電圧値となります。十分にディレーティングをお取りください。

ブートストラップコンデンサー必要容量計算式

$C_B = I_B \times \frac{\text{最大ハイサイド駆動時間}}{(V_{CC} - V_F (BSD) + V_F (FRD) - 13.5)} \ [F]

C_B：ブートストラップコンデンサー容量（最低）
I_B：ハイサイドドライバー消費電流（最大値）
$V_F (BSD)$：ブートストラップダイオード順方向電圧
$V_F (FRD)$：フライホイールダイオード順方向電圧

注２：使用に際して実際の使用環境にて、ノイズなどが発生する場合は、コンデンサーの容量を可変する合わせ込みが必要になります。また、実装時には、リプル・ノイズ除去効果を高めるためにICリードの根元になるべく近い位置に配置してください。

注３：DIAG端子はオープンドレイン構造となっています。DIAG端子を使用しない場合には、GNDに接続してください。DIAG端子は、絶対最大定格として電流値20mAを規定しているので、プルアップ電圧が7Vの場合、抵抗値の下限は350Ωとなります。

注３、４：プルアップ抵抗値の推奨範囲値は、下記となります。
R_1：1kΩ～10kΩ
R_2：5kΩ～15kΩ

注５：検出電流は次式により表されます。
$I_O = \frac{V_R}{R_3}$（$V_R = 0.5 \ V$ 標準）

シャント抵抗を接続するIS1/IS2/IS3端子は誤動作、破壊を回避するため配線長は短く設計してください。配線長が長くなる場合にはIS1/IS2/IS3端子-GND端子間にサージ保護用のダイオードを取り付けて下さい。
製品取り扱い上のお願い
株式会社東芝およびその子会社ならびに関係会社を以下「当社」といいます。
本資料に掲載されているハードウェア、ソフトウェアおよびシステムを以下「本製品」といいます。

- 本製品に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を得て本資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- 当社は品質、信頼性の向上に努めていますが、半導体・ストレージ製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウェア・ソフトウェア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報（本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど）および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器（以下「特定用途」という）に使用されることが意図されています。特定用途には原子力関連機器、航空・宇宙機器、医療機器（ヘルスケア除く）、車両・船舶機器、通信信号機器、燃焼・爆発制御機器、各種安全関連機器、昇降機器、発電関連機器などが含まれますが、本資料に個別に記載する用途は除きます。特定用途に使用された場合には、当社は一切の責任を負いません。なお、詳細は当社営業窓口まで、または当社Webサイトのお問い合わせフォームからお問い合わせください。
- 本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- 本資料を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- 本資料に掲載ある技術情報は、製品の代表的動作・応用を説明するもので、その使用に際して当社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途、書面による契約またはお客様と当社が合意した仕様書がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の保証（機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含むがこれに限らない。）をしておりません。
- 本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。また、輸出国際にては、「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用ある輸出関連法令を遵守し、それらの定めるところにより必要な手続きを行ってください。
- 本製品のRoHS適合性など、詳細につきましては製品個別に必ず当社営業窓口までお問い合わせください。本製品のご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合するようにご使用ください。お客様がかかる法令を遵守しないことににより生じた損害に関して、当社は一切の責任を負いかねます。

東芝デバイス＆ストレージ株式会社
https://toshiba.semicon-storage.com/jp/