High-Voltage Intelligent Power Devices
Application Note (SSOP30)
Table of Contents

Table of Contents ... 2
1. Products discussed herein.. 3
 1.1. Product offerings.. 3
2. Outline dimensions and marking of the SSOP30 package .. 4
 2.1. Package outline dimensions.. 5
 2.2. Marking.. 6
 2.3. PCB land pattern dimensions (Reference) 6
 2.4. Soldering... 7
 2.5. Attaching a heatsink... 8
3. Pin description .. 10
 3.1. Pin assignment.. 10
4. Functional descriptions and usage considerations 11
 4.1. Protection features... 11
 4.2. V\textsubscript{REG} power supply 14
 4.3. Power supply sequencing ... 15
 4.4. Calculating power losses... 16
5. Application circuit example .. 17
 5.1. Application circuit example 17
6. RESTRICTIONS ON PRODUCT USE................................. 19
1. Products discussed herein

1.1. Product offerings

Table 1.1 High-voltage intelligent power devices

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Ratings</th>
<th>Features</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPD4204F</td>
<td>600 V/2.5 A</td>
<td>Y – Y Y Y Y</td>
<td>180°</td>
</tr>
<tr>
<td>TPD4206F</td>
<td>500 V/2.5 A</td>
<td>Y – Y Y Y Y</td>
<td>180°</td>
</tr>
<tr>
<td>TPD4207F</td>
<td>600 V/5 A</td>
<td>Y – Y Y Y Y</td>
<td>180°</td>
</tr>
</tbody>
</table>

Note: In combination with a microcontroller unit (MCU) or a motor controller IC

HVIPDs for sine-wave (180-degree) type

The HVIPDs can be used in combination with Toshiba’s motor controller IC or MCU to drive a motor with sine-wave (180-degree) type so as to reduce its acoustic noise and vibration.

Figure 1.1 Block diagram for an HVIPD for sine-wave (180-degree) type
Table 1.2.1 Controller IC list sine-wave drive type (Example of products)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Vcc / Io</th>
<th>Position Sensing</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lead Angle Control</td>
</tr>
<tr>
<td>TB6551FAG</td>
<td>SSOP24</td>
<td>12V/2mA</td>
<td>Hall effect IC</td>
<td>External setting</td>
</tr>
<tr>
<td>TB6556FG</td>
<td>SSOP30</td>
<td>12V/2mA</td>
<td></td>
<td>Current Feedback</td>
</tr>
<tr>
<td>TB6584FNG/AFNG</td>
<td>SSOP30</td>
<td>18V/2mA</td>
<td></td>
<td>RPM Feedback</td>
</tr>
<tr>
<td>TB6634FNG</td>
<td>SSOP30</td>
<td>18V/2mA</td>
<td>Hall element or Hall effect IC</td>
<td>RPM Feedback</td>
</tr>
<tr>
<td>TB6631FNG</td>
<td>SSOP30</td>
<td>18V/2mA</td>
<td></td>
<td>RPM Feedback</td>
</tr>
<tr>
<td>TC78B041FNG</td>
<td>SSOP30</td>
<td>18V/2mA</td>
<td></td>
<td>RPM Feedback</td>
</tr>
<tr>
<td>TC78B042FTG</td>
<td>QFN32</td>
<td>18V/2mA</td>
<td></td>
<td>RPM Feedback</td>
</tr>
</tbody>
</table>

Note 1: Specifications such as modulation generation method and automatic advance angle mode differ. Refer to the data sheet of each product for details.

Note 2: Internal auto lead angle control based on the frequency of the FG signal.

Note 3: Toshiba’s original automatic phase adjustment function.

Table 1.2.2 Microcomputer list sine-wave drive type (Example of products)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>ROM Size (Bytes)</th>
<th>RAM Size (Bytes)</th>
<th>Max. Operating Frequency (MHz)</th>
<th>Operating Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>TMPM375FSDMG</td>
<td>SSOP30</td>
<td>64 K</td>
<td>4 K</td>
<td>40(Note 1)</td>
<td>4.5</td>
</tr>
<tr>
<td>TMPM372FWUG</td>
<td>LQFP64</td>
<td>128 K</td>
<td>6 K</td>
<td>80(Note 2) 32(Note 1)</td>
<td>4.5</td>
</tr>
<tr>
<td>TMPM373FWDUG</td>
<td>LQFP48</td>
<td>256 K</td>
<td>10 K</td>
<td>80(Note 2)</td>
<td>4.5</td>
</tr>
<tr>
<td>TMPM374FWUG</td>
<td>LQFP44</td>
<td>512 K</td>
<td>32 K</td>
<td>80(Note 2)</td>
<td>4.5</td>
</tr>
<tr>
<td>TMPM370FYDFG</td>
<td>QFP100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMPM370FYFG</td>
<td>LQFP100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMPM376FDDFG</td>
<td>QFP100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMPM376FDFG</td>
<td>LQFP100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Ambient temperature -40℃～105℃

Note 2: Ambient temperature -40℃～85℃

2. Outline dimensions and marking of the SSOP30 package

The SSOP30 package simplifies board trace routing because it has high-voltage and control
pins on opposite sides. In addition, the SSOP30 package is thin and small.

2.1. Package outline dimensions

P-SSOP30-1120-1.00-001

Unit: mm

Figure 2.1 Outline dimensions of the SSOP30 package
2.2. Marking

Figure 2.2 Part marking on the SSOP30 package

2.3. PCB land pattern dimensions (Reference)

(Unit: mm)

Figure 2.3 Land pattern of the SSOP30 (Reference)
2.4. Soldering

Recommended soldering methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Reflow soldering</th>
<th>Flow soldering</th>
<th>Soldering iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 times maximum</td>
<td>Not supported</td>
<td></td>
<td>Only once</td>
</tr>
</tbody>
</table>

1) Reflow
 - Peak temperature: Maximum 260°C / a moment
 - Internal device temperature / period: 230°C or more / 30 to 50 seconds
 - Pre-heat temperature / period: 180 to 190°C / 60 to 120 seconds

 Note: Maximum mounting temperature is based on package surface temperature.

 Figure 2.4 shows the temperature profile. This profile represents the maximum device temperature at which device performance can be guaranteed. The preheat temperature and heating temperature will be governed by factors such as the type of solder paste used, but must be within the range shown in Figure 2.4.

 The package is carefully wrapped to be protected against humidity. After unwrapping, the package should be maintained at 30°C and 60% RH until the final reflow stage, and mounting should be completed within 168 hours.

 ![Figure 2.4 Example of a reflow soldering profile](image)

2) Flow
 - This package is not suitable for solder flow mounting.

3) Soldering iron
 - Heating method: Via lead tip of soldering iron
 - Heating condition: 400°C (at tip) for no more than 3sec
 - Repetition: No repetitions (once only per terminal)

• Note:
 - Check solder bonding strength via in-house testing at the substrate mounting stage.
2.5. Attaching a heatsink

A heatsink may be required, depending on the ambient temperature or the heating of the HVIPD or its neighboring devices. Attach a heatsink as described below if necessary.

- Heatsink attachment example
 1) Example of using an insulating sheet

 ![Heatsink attachment example (using an insulating sheet)](image1)

 Figure 2.5.1 Heatsink attachment example (using an insulating sheet)

 2) Example of using resin or gelatinous insulating material

 ![Heatsink attachment example (using resin or gelatinous insulating material)](image2)

 Figure 2.5.2 Heatsink attachment example (using resin or gelatinous insulating material)

 3) Example of other heatsink attachment method

 ![Heatsink attachment example (other methods)](image3)

 Figure 2.5.3 Soldering **Figure 2.5.4 Pushpin** **Figure 2.5.5 Adhesion attachment**

Table 2.5.1 Example of parts used

<table>
<thead>
<tr>
<th>Part</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw</td>
<td>M3</td>
</tr>
<tr>
<td>Insulating sheet</td>
<td>Soft material</td>
</tr>
<tr>
<td></td>
<td>t=0.5mm</td>
</tr>
<tr>
<td>Height spacer</td>
<td>t=2.5mm</td>
</tr>
<tr>
<td></td>
<td>Holes:3.2Φ</td>
</tr>
</tbody>
</table>
The result of having measured the case temperature in the substrate for evaluation which attached the radiator plate with soldering is shown in reference.

Evaluation conditions: \(V_{BB}=280\,\text{V}, \, V_{CC}=15\,\text{V} \), motor number of rotations = regularity (1500rpm), \(f_c=16.5\,\text{kHz} \), \(T_a=25^\circ\text{C} \)

In combination with substrate for our company evaluation (TPD4204F+TB6551FAG), Heatsink (three types), Variable of the load of a fan motor is carried out, and case temperature is measured.

![Images of substrate evaluation and temperature survey position]

Figure 2.5.6 The substrate for evaluation, and a temperature survey position

<table>
<thead>
<tr>
<th>TYPE-A</th>
<th>TYPE-B</th>
<th>TYPE-C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sankyo Thermo Tech Type:20FSH036-L36-WFL-B</td>
<td>Sankyo Thermo Tech Type:20FSH036-L64-WFL-B</td>
<td>Sankyo Thermo Tech Type:16FSH064-L36-WFL-B</td>
</tr>
<tr>
<td>Length:36 × Width:36 × Height:20mm</td>
<td>Length:36 × Width:64 × Height:20mm</td>
<td>Length:36 × Width:64 × Height:16mm</td>
</tr>
<tr>
<td>Surface area:115cm²</td>
<td>Surface area:202cm²</td>
<td>Surface area:163cm²</td>
</tr>
</tbody>
</table>
Figure 2.5.8 Bent PCB

3. Pin description

3.1. Pin assignment

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>No-connect pin, which is not connected to the internal chip</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>No-connect pin, which is not connected to the internal chip</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>No-connect pin, which is not connected to the internal chip</td>
</tr>
<tr>
<td>4</td>
<td>DIAG</td>
<td>Open-drain diagnostic output. Connect a pull-up resistor to the DIAG pin. The DIAG pin is driven Low in the event of a fault (an overcurrent, overtemperature, or under voltage condition).</td>
</tr>
<tr>
<td>5</td>
<td>VCC</td>
<td>Control power supply pin (15V typical)</td>
</tr>
</tbody>
</table>
4. Functional descriptions and usage considerations

4.1. Protection features

Under voltage protection

The HVIPD incorporates an under voltage protection circuit, which prevents internal MOSFETs from operating in an unsaturated region when the VCC and VBS voltages drop. When VCC drops to VCCUVD (= 11V typical), all the MOSFET outputs shut down regardless of the input states. Under voltage protection has a hysteresis of 0.5V. When VCC rises back to VCCUVR (= 11.5V typical), the MOSFETs return to normal operation and turn on according to the input states. When VCC under voltage protection is tripped, the DIAG output toggles its state. However, the DIAG output might remain unchanged if VCC is lower than 7V. (All the MOSFET outputs shut down when VCC drops below 11V, even if the DIAG output does not toggle.) When VBS drops to
V_{BSUVD} (= 10V typical), all the high-side MOSFET outputs shut down. When V_{BS} rises back to V_{BSUVR} (= 10.5V typical), 0.5V higher than V_{BSUVD}, the high-side MOSFETs return to normal operation and operate according to the control signals. V_{BS} under voltage protection does not cause the DIAG output to toggle.

Figure 4.1.1 V_{CC} Under voltage protection

Figure 4.1.2 V_{BS} Under voltage protection

Overcurrent protection

The HVIPD incorporates a current limiter, which protects itself from excessive current at motor startup or when the rotor is locked. The current limiter senses the voltage across the current-sensing resistor connected to the RS pin. When this voltage exceeds V_{R} (= 0.5V typical), the MOSFET outputs temporarily shut down after a delay of 3μs (typical) to prevent a further
increase in current. Setting the control signals to all-Lows releases the HVIPD from current-limiting mode.

Selecting a current-limiting resistor:

\[I_O = \frac{V_R}{R_1} \]

\(V_R \): Current-limiting voltage, \(I_O \): Current limit, \(R_1 \): Current-limiting resistor

Table 4.1 Current-limiting voltage (from the Electrical Characteristics table) Unit: V

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current-limiting voltage</td>
<td>(V_R)</td>
<td>0.46</td>
<td>0.5</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Setting the current-limiting delay time

The HVIPD incorporates a filter shown in Figure 4.1.3 to prevent the current limiter from malfunctioning because of the noise at the current-limiting resistor. The delay time from when the current limiter senses a current exceeding the current limit to when the MOSFETs outputs shut down is determined by the sum of the filtering time (dead time) of the filter and the delay time of the control circuit:

\[\text{Current-limiting delay time} (D_t) = \text{filtering time} (\text{dead time}) + \text{control circuit delay} \]

If the current-limiting resistor has large noise, the dead time of the internal filter may be insufficient. In that case, an external filter should be added as shown below. Note that an external filter increases the current-limiting delay time (i.e., the time required for the MOSFET outputs to shut down).

Table 4.2 Current-limiting delay time (from the Electrical Characteristics table) Unit: \(\mu s \)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current-limiting delay time</td>
<td>(D_t)</td>
<td>1.5</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

![Figure 4.1.3 Internal circuit of the RS pin](image)

![Figure 4.1.4 Overcurrent protection operation](image)
Thermal shutdown
The HVIPD incorporates a thermal shutdown circuit to protect itself from excessive temperature. When an external factor or internally generated heat causes the chip temperature to rise to the thermal shutdown temperature (TSD), all the MOSFET outputs shut down regardless of the input states. Thermal shutdown has a hysteresis (ΔTSD) of 50°C typical. When the chip temperature drops below (TSD − ΔTSD), the MOSFETs return to normal operation and turn on according to the input states.

The HVIPD senses its chip temperature at one position. Suppose that MOSFETs are heat sources. The time taken to shut down the MOSFETs differs, depending on the distance between a heat source and the temperature sensor. Therefore, the chip temperature may be higher than the thermal shutdown temperature (TSD) when the thermal shutdown circuit is tripped.

![Figure 4.1.5 Thermal shutdown operation](image)

SD function
An overcurrent condition may be detected by an external circuit. Setting the SD pin Low causes all the MOSFET outputs to shut down after a delay of 2μs (typical). Setting the control signals to all-Lows releases the MOSFETs from shutdown mode.

4.2. VREG power supply
A regulated supply voltage from the VREG pin is generated from the VCC power supply. VREG can be used as a power supply not only for the internal circuit but also for an external control IC or other peripheral ICs.
Add an external capacitor to the VREG pin to prevent oscillation. A capacitor with a value of 0.1
μF to 1μF is recommended. As I\textsubscript{REG} increases, V\textsubscript{REG} becomes more susceptible to oscillation. Adjust the value of the capacitor if V\textsubscript{REG} oscillates under actual usage conditions. Table 4.2 shows the V\textsubscript{REG} output voltage.

Table 4.2 Regulator voltage (at V\textsubscript{CC}=15V, I\textsubscript{REG}=30mA) Unit: V

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.5</td>
<td>7</td>
<td>7.5</td>
</tr>
</tbody>
</table>

4.3. Power supply sequencing

We do not recommend the following power sequences:

- At power-up: Powering up V\textsubscript{CC} after V\textsubscript{BB} and control signals
- At power-down: Powering down V\textsubscript{CC} before V\textsubscript{BB} and control signals

Table 4.3.1 At power-up

<table>
<thead>
<tr>
<th>At power-up</th>
<th>〇/×</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\textsubscript{CC}</td>
<td>V\textsubscript{BB}</td>
</tr>
<tr>
<td>V\textsubscript{BB}</td>
<td>V\textsubscript{CC}</td>
</tr>
<tr>
<td>Control signals</td>
<td>V\textsubscript{BB}</td>
</tr>
</tbody>
</table>

Table 4.3.1 At power-down

<table>
<thead>
<tr>
<th>At power-down</th>
<th>〇/×</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\textsubscript{CC}</td>
<td>V\textsubscript{BB}</td>
</tr>
<tr>
<td>V\textsubscript{BB}</td>
<td>V\textsubscript{CC}</td>
</tr>
<tr>
<td>Control signals</td>
<td>V\textsubscript{BB}</td>
</tr>
</tbody>
</table>

〇: Recommended, ×: Unrecommended

Note that even when V\textsubscript{CC} and V\textsubscript{BB} are powered down, the device might be permanently damaged if the V\textsubscript{BB} line is disconnected by a relay or other means while the motor is running because this blocks a current recirculation path to V\textsubscript{BB}.
4.4. Calculating power losses

This section shows how to calculate power losses that occur when the output current is sinusoidal.

\[P = P_{on} + P_t + P_{BB} + P_{CC} \]

(1) Conduction loss: \(P_{on} \)

\[P_{on} = P_H + P_L + P_D \ (W) \]

- High-side MOSFET conduction loss: \(P_H = I^2 \times R_{onH} \times (1/8 + D/3\pi \times \cos\theta) \times 3 \)
- Low-side MOSFET conduction loss: \(P_L = I^2 \times R_{onL} \times (1/8 + D/3\pi \times \cos\theta) \times 3 \)
- Flywheel diode conduction loss: \(P_D = I \times V_F \times (1/8 - D/3\pi \times \cos\theta) \times 6 \)

\(I_p \): Peak motor winding current (A)
\(R_{onH}/R_{onL} \): On-resistance of the output MOSFET (Ω)
\(V_F \): Forward voltage drop of the FRD (V)
\(D \): PWM duty cycle (on-duty cycle of the high-side MOSFETs)
\(\theta \): Power factor

(2) MOSFET switching loss: \(P_t \)

\[P_t = (W_{ton} + W_{toff}) \times f_C / n \times 6 \ (W) \]

- \(W_{ton} \): Turn-on loss (μJ per pulse)
- \(W_{toff} \): Turn-off loss (μJ per pulse)
- \(f_C \): Switching frequency (Hz)

(3) \(V_{BB} \) power loss: \(P_{BB} \)

\[P_{BB} = V_{BB} \times I_{BB} \ (W) \]

\(I_{BB} \): \(V_{BB} \) supply current (A) * Supply current when all phases are off

(4) Steady-state power loss: \(P_{CC} \)

\[P_{CC} = V_{CC} \times I_{CC} \ (W) \]

\(I_{CC} \): \(V_{CC} \) supply current (A) * Supply current during normal operation

Figure 4.4 Motor current waveform for power loss calculation
5. Application circuit example

5.1. Application circuit example

Figure 5.1 Application circuit example (for tripping the current limiter with an HVIPD)

Figure 5.2 Application circuit example (for tripping the current limiter with a motor controller IC or an MCU)
Table 5.1 shows typical external parts.

Table 5.1 External parts for the application circuit

<table>
<thead>
<tr>
<th>Part</th>
<th>Recommended Value</th>
<th>Purpose</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>C\textsubscript{1}, C\textsubscript{2}, C\textsubscript{3}</td>
<td>25V/2.2(\mu)F</td>
<td>Bootstrap capacitors</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>C\textsubscript{4}</td>
<td>25V/10(\mu)F</td>
<td>(V\textsubscript{CC}) voltage stability</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>C\textsubscript{5}</td>
<td>25V/0.1(\mu)F</td>
<td>(V\textsubscript{CC}) surge absorption</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>C\textsubscript{6}</td>
<td>25V/1(\mu)F</td>
<td>(V\textsubscript{REG}) voltage stability</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>C\textsubscript{7}</td>
<td>25V/1000pF</td>
<td>(V\textsubscript{REG}) surge absorption</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>R\textsubscript{1}</td>
<td>5.1k(\Omega)</td>
<td>DIAG pull-up resistor</td>
<td>(Note 3)</td>
</tr>
<tr>
<td>R\textsubscript{2}</td>
<td>10k(\Omega)</td>
<td>SD pull-up resistor</td>
<td>(Note 4)</td>
</tr>
<tr>
<td>R\textsubscript{3}</td>
<td>0.35(\Omega)±1% (1W)</td>
<td>Overcurrent detection</td>
<td>(Note 5)</td>
</tr>
</tbody>
</table>

Note 1: The required bootstrap capacitor value varies, depending on the motor drive conditions. The capacitor is biased by \(V\textsubscript{CC}\) and must be sufficiently derated.

Calculating the value of the bootstrap capacitor required:

\[
CB = IB \times \frac{\text{maximum high-side drive period}}{(V\textsubscript{CC} - VF(BSD) + VF(FRD) - 13.5)} \text{ (F)}
\]

- \(CB\): Minimum capacitance of the bootstrap capacitor
- \(IB\): Maximum supply current of the high-side driver
- \(VF\) (BSD): Forward voltage of the bootstrap diode
- \(VF\) (FRD): Forward voltage of the flywheel diode

Note 2: The capacitor values should be adjusted if noise occurs under actual usage conditions. Place the capacitors as close as possible to the IC leads to minimize ripple noise.

Note 3: The DIAG pin has an open-drain configuration. When unused, the DIAG pin should be connected to GND. The maximum rated current of the DIAG pin is 20mA. Therefore, when it is pulled up to 7V, the minimum resistor value is 350\(\Omega\).

Note 3 and Note 4: The recommended pull-up resistor values are:
- \(R\textsubscript{1}\): 1k\(\Omega\) to 10k\(\Omega\)
- \(R\textsubscript{2}\): 5k\(\Omega\) to 15k\(\Omega\)

Note 5: The current-sensing level is expressed as: \(I_0 = V\text{_R} \div R\textsubscript{3}\) (\(V\text{_R} = 0.5\text{V}\) typical)

In order that IS1/IS2/IS3 terminals which connects shunt resistance may avoid malfunction and destruction, please wiring length be short and design.

When wiring length becomes long, please attach the diode for surge protection between IS1/IS2/IS3 terminals -GND terminal.
RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.