High-Voltage Intelligent Power Devices Application Note(SSOP30)

Table of Contents

Table of Contents 2

1. Products discussed herein 3
1.1. Product offerings 3
2. Outline dimensions and marking of the SSOP30 package
2.1. Package outline dimensions 5
2.2. Marking 6
2.3. PCB land pattern dimensions (Reference) 6
2.4. Soldering 7
2.5. Attaching a heatsink 8
3. Pin description 10
3.1. Pin assignment 10
4. Functional descriptions and usage considerations 11
4.1. Protection features 11
4.2. $V_{\text {REG }}$ power supply 14
4.3. Power supply sequencing 15
4.4. Calculating power losses. 16
5. Application circuit example 17
5.1. Application circuit example 17
RESTRICTIONS ON PRODUCT USE 19

1. Products discussed herein

1.1. Product offerings

Table 1.1 High-voltage intelligent power devices

Part Number	Ratings	Features						Type
		6-Input	3-Phase Distribution PWM Circuit	Level-Shifter \& Driver	over-current Protection	Thermal Shutdown	Under voltage Protection	
TPD4204F	$\begin{gathered} 600 \mathrm{~V} / \\ 2.5 \mathrm{~A} \end{gathered}$	Y	-	Y	Y	Y	Y	$\begin{gathered} 180^{\circ} \\ \text { (Note) } \end{gathered}$
TPD4206F	$\begin{gathered} 500 \mathrm{~V} / \\ 2.5 \mathrm{~A} \end{gathered}$	Y	-	Y	Y	Y	Y	$\begin{gathered} 180^{\circ} \\ \text { (Note) } \end{gathered}$
TPD4207F	$\begin{gathered} 600 \mathrm{~V} / \\ 5 \mathrm{~A} \end{gathered}$	Y	-	Y	Y	Y	Y	$\begin{gathered} 180^{\circ} \\ (\text { Note }) \end{gathered}$

Note: In combination with a microcontroller unit (MCU) or a motor controller IC

HVIPDs for sine-wave (180-degree) type
The HVIPDs can be used in combination with Toshiba's motor controller IC or MCU to drive a motor with sine-wave (180-degree) type so as to reduce its acoustic noise and vibration.

Figure 1.1 Block diagram for an HVIPD for sine-wave (180-degree) type

Table 1.2.1 Controller IC list sine-wave drive type (Example of products)

Part Number	Package	Vcc / Io	Position Sensing	Features					
				Lead Angle Contro	Built-in Oscillator	Overcurrent Protection	Gate Block Protection	Position Signal Abnormality Protection	$V_{c c}$ Under voltage Protection
TB6551FAG	SSOP24	12V/2mA	Hall effect IC	External setting	-	Y	Y	Y	Y
TB6556FG	SSOP30	12V/2mA		Current Feedback	-	Y	Y	Y	Y
TB6584FNG/AFNG (Note 1)	SSOP30	18V/2mA	Hall element or Hall effect IC		Y	Y	Y	Y	Y
TB6634FNG	SSOP30	18V/2mA			Y	Y	Y	Y	Y
TB6631FNG	SSOP30	18V/2mA		RPM Feedback (Note 2)	Y	Y	Y	Y	Y
TC78B041FNG	SSOP30	18V/2mA		Intelligent Phase Control (Note 3)	Y	Y	Y	Y	Y
TC78B042FTG	QFN32	18V/2mA			Y	Y	Y	Y	Y

Note 1: Specifications such as modulation generation method and automatic advance angle mode differ.
Refer to the data sheet of each product for details.
Note 2: Internal auto lead angle control based on the frequency of the FG signal.
Note 3: Toshiba's original automatic phase adjustment function.
Table 1.2.2 Microcomputer list sine-wave drive type (Example of products)

Part Number	Package	ROM Size (Bytes)	RAM Size (Bytes)	Max. Operating Frequency (MHz)	Operating Voltage (V)	
					Min	Max
TMPM375FSDMG	SSOP30	64 K	4 K	40(Note 1)	4.5	5.5
TMPM372FWUG	LQFP64	128 K	6 K	$\begin{aligned} & 80(\text { Note } 2) \\ & 32(\text { Note } 1) \end{aligned}$	4.5	5.5
TMPM373FWDUG	LQFP48					
TMPM374FWUG	LQFP44					
TMPM370FYDFG	QFP100	256 K	10 K	80(Note 2)	4.5	5.5
TMPM370FYFG	LQFP100					
TMPM376FDDFG	QFP100	512 K	32 K	80(Note 2)	4.5	5.5
TMPM376FDFG	LQFP100					

Note 1: Ambient temperature $-40^{\circ} \mathrm{C} \sim 105^{\circ} \mathrm{C}$
Note 2: Ambient temperature $-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$

2. Outline dimensions and marking of the SSOP30 package

The SSOP30 package simplifies board trace routing because it has high-voltage and control
pins on opposite sides. In addition, the SSOP30 package is thin and small.

2.1. Package outline dimensions

P-SSOP30-1120-1.00-001
Unit: mm

Figure 2.1 Outline dimensions of the SSOP30 package

2.2. Marking

When Lot code is 『 $930 』$, it expressed that having been manufactured at the 30th week in 2019.

Figure 2.2 Part marking on the SSOP30 package
2.3. PCB land pattern dimensions (Reference)

Figure 2.3 Land pattern of the SSOP30(Reference)

2.4. Soldering

Recommended soldering methods
Table 2.4 Adaptation table

Reflow soldering	Flow soldering	Soldering iron
3 times maximum	Not supported	Only once

1) Reflow

Peak temperature : Maximum $260^{\circ} \mathrm{C}$ / a moment
Internal device temperature / period : $230^{\circ} \mathrm{C}$ or more / 30 to 50 seconds
Pre-heat temperature / period : 180 to $190^{\circ} \mathrm{C} / 60$ to 120 seconds
Note: Maximum mounting temperature is based on package surface temperature.
Figure 2.4 shows the temperature profile.
This profile represents the maximum device temperature at which device performance can be guaranteed. The preheat temperature and heating temperature will be governed by factors such as the type of solder paste used, but must be within the range shown in Figure 2.4.

The package is carefully wrapped to be protected against humidity. After unwrapping, the package should be maintained at $30^{\circ} \mathrm{C}$ and $60 \% \mathrm{RH}$ until the final reflow stage, and mounting should be completed within 168 hours.

Figure 2.4 Example of a reflow soldering profile
2) Flow

This package is not suitable for solder flow mounting.
3) Soldering iron

Heating method : Via lead tip of soldering iron
Heating condition : $400^{\circ} \mathrm{C}$ (at tip) for no more than 3 sec
Repetitions: No repetitions (once only per terminal)

- Note:

Check solder bonding strength via in house testing at the substrate mounting stage.

2.5. Attaching a heatsink

A heatsink may be required, depending on the ambient temperature or the heating of the HVIPD or its neighboring devices. Attach a heatsink as described below if necessary.

- Heatsink attachment example

1) Example of using an insulating sheet

Table 2.5.1 Example of parts used

Screw	M3
Insulating sheet	Soft material $t=0.5 \mathrm{~mm}$
Height spacer	$\mathrm{t}=2.5 \mathrm{~mm}$ Holes:3.2Ф

Figure 2.5.1 Heatsink attachment example (using an insulating sheet)
2) Example of using resin or gelatinous insulating material

Figure 2.5.2 Heatsink attachment example (using resin or gelatinous insulating material)
3) Example of other heatsink attachment method

Soldering
Figure 2.5.3 Soldering

Pushpin
Figure 2.5.4 Pushpin

Figure 2.5.5 Adhesion attachment

The result of having measured the case temperature in the substrate for evaluation which attached the radiator plate with soldering is shown in reference.
Evaluation conditions: $\mathrm{V}_{\mathrm{BB}}=280 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$, motor number of rotations =regularity (1500rpm),

$$
\mathrm{fc}=16.5 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}
$$

In combination with substrate for our company evaluation (TPD4204F+TB6551FAG), Heatsink (three types), Variable of the load of a fan motor is carried out, and case temperature is measured.

Figure 2.5.6 The substrate for evaluation, and a temperature survey position
Table 2.5.2 Example of a model name of heatsink

TYPE-A	TYPE-B	TYPE-C
Sankyo Thermo Tech Type:20FSH036-L36-WFL-B With a terminal Length:36 \times Width:36 \times Height:20mm Surface area: $115 \mathrm{~cm}^{2}$	Sankyo Thermo Tech Type:20FSH036-L64-WFL-B With a terminal Length:36 \times Width:64 \times Height:20mm Surface area:202cm²	Sankyo Thermo Tech Type:16FSH064-L36-WFL-B With a terminal Length:36 \times Width:64: \times Height:16mm Surface area: $163 \mathrm{~cm}^{2}$

Figure 2.5.7 Input electric power $(\mathrm{Pi})-\Delta \mathrm{Tc}$ and power loss- $\Delta \mathrm{Tc}$ in various heatsink

- Mounting to substrate

Where the SSOP30 package is sandwiched between the heat sink and the substrate, it the static load should be no greater than 10 N . The load should be spread uniformly across the device, and screw mountings should not result in substrate

Figure 2.5.8 Bent PCB bending as shown in right Figure, as the resulting distortion could cause device damage or failure. Consider using spacers or equivalent to attach the heat sink so as to prevent substrate bending.

-Flatness

The surface beneath the heat sink to which the device is attached must be suitably smooth and flat. The heat sink should likewise show no signs of warping or undulation and should be free of foreign matter such as burrs and scraps from pressing and cutting processes. In the worst case scenario this could lea d to device failure. And heat fins fixed to the top of the package can cause device failure due to heat stress. Hard components (such as the heat sink) should be mounted onto the package together with a buffer layer (typically soft insulating sheet or conductive gel). Silicon grease should be avoided.

3. Pin description

3.1. Pin assignment

Table 3.1 Pin description

Pin No.	Symbol	
1	NC	No-connect pin, which is not connected to the internal chip
2	NC	No-connect pin, which is not connected to the internal chip
3	NC	No-connect pin, which is not connected to the internal chip
4	DIAG	Open-drain diagnostic output. Connect a pull-up resistor to the DIAG pin. The DIAG pin is driven Low in the event of a fault (an overcurrent, overtemperature, or under voltage condition).
5	V $_{\text {CC }}$	Control power supply pin (15V typical)

6	$V_{\text {REG }}$	7V regulator output pin
7	SD	External protection input (Active-Low, no hysteresis)
8	GND	Ground pin
9	RS	Overcurrent detection pin
10	LW	Control pin for the low-side Phase-W MOSFET. The MOSFET turns off when LW \leq 1.5 V and turns on when $\mathrm{LW} \geq 2.5 \mathrm{~V}$.
11	LV	Control pin for the low-side Phase-V MOSFET. The MOSFET turns off when LV ≤ 1.5 V and turns on when $\mathrm{LV} \geq 2.5 \mathrm{~V}$.
12	LU	Control pin for the low-side Phase-U MOSFET. The MOSFET turns off when LU ≤ 1.5 V and turns on when $\mathrm{LU} \geq 2.5 \mathrm{~V}$.
13	HW	Control pin for the high-side Phase-W MOSFET. The MOSFET turns off when HW \leq 1.5 V and turns on when $\mathrm{HW} \geq 2.5 \mathrm{~V}$.
14	HV	Control pin for the high-side Phase-V MOSFET. The MOSFET turns off when HV \leq 1.5 V and turns on when $\mathrm{HV} \geq 2.5 \mathrm{~V}$.
15	HU	Control pin for the high-side Phase-U MOSFET. The MOSFET turns off when HU \leq 1.5 V and turns on when $\mathrm{HU} \geq 2.5 \mathrm{~V}$.
16	GND	Ground pin
17	NC	No-connect pin, which is not connected to the internal chip
18	NC	No-connect pin, which is not connected to the internal chip
19	NC	No-connect pin, which is not connected to the internal chip
20	IS3	Source pin for the Phase-W MOSFET
21	W	Phase-W output pin
22	BSW	Phase-W bootstrap capacitor connection pin
23	$V_{B B}$	High-voltage power supply pin
24	$\mathrm{V}_{\text {BB }}$	High-voltage power supply pin
25	BSV	Phase-V bootstrap capacitor connection pin
26	V	Phase-V output pin
27	IS2	Source pin for the Phase-V MOSFET
28	IS1	Source pin for the Phase-U MOSFET
29	BSU	Phase-U bootstrap capacitor connection pin
30	U	Phase-U output pin

* The NC pins are no-connect pins that are not connected to the internal chip.

Even if the NC pins are left open, they do not affect the electrical characteristics of the device. However, we recommend soldering them onto a PCB.

4. Functional descriptions and usage considerations

4.1. Protection features

Under voltage protection

The HVIPD incorporates an under voltage protection circuit, which prevents internal MOSFETs from operating in an unsaturated region when the V_{CC} and V_{BS} voltages drop. When V_{CC} drops to $\mathrm{V}_{\mathrm{CC}} U V D$ ($=11 \mathrm{~V}$ typical), all the MOSFET outputs shut down regardless of the input states. Under voltage protection has a hysteresis of 0.5 V . When V_{cc} rises back to $\mathrm{V}_{\mathrm{CC}} \mathrm{UVR}$ ($=11.5 \mathrm{~V}$ typical), the MOSFETs return to normal operation and turn on according to the input states. When V_{cc} under voltage protection is tripped, the DIAG output toggles its state. However, the DIAG output might remain unchanged if $V_{C C}$ is lower than 7 V . (All the MOSFET outputs shut down when V_{cc} drops below 11V, even if the DIAG output does not toggle.) When V_{BS} drops to
$\mathrm{V}_{B S} U V D$ ($=10 \mathrm{~V}$ typical), all the high-side MOSFET outputs shut down. When V_{BS} rises back to $V_{B S} U V R$ ($=10.5 \mathrm{~V}$ typical), 0.5 V higher than $V_{B S} U V D$, the high-side MOSFETs return to normal operation and operate according to the control signals. V_{BS} under voltage protection does not cause the DIAG output to toggle.

Figure 4.1.1 V_{cc} Under voltage protection

Figure 4.1.2 V_{BS} Under voltage protection

Overcurrent protection

The HVIPD incorporates a current limiter, which protects itself from excessive current at motor startup or when the rotor is locked. The current limiter senses the voltage across the currentsensing resistor connected to the RS pin. When this voltage exceeds V_{R} ($=0.5 \mathrm{~V}$ typical), the MOSFET outputs temporarily shut down after a delay of $3 \mu \mathrm{~s}$ (typical) to prevent a further
increase in current. Setting the control signals to all-Lows releases the HVIPD from currentlimiting mode.

Selecting a current-limiting resistor:
$\mathrm{I}_{\mathrm{O}}=\mathrm{V}_{\mathrm{R}} \div \mathrm{R}_{1}$
V_{R} : Current-limiting voltage, I : Current limit, R_{1} : Current-limiting resistor

Table 4.1 Current-limiting voltage (from the Electrical Characteristics table) Unit: V

Characteristics	Symbol	Min	Typ.	Max
Current-limiting voltage	V_{R}	0.46	0.5	0.54

Setting the current-limiting delay time
The HVIPD incorporates a filter shown in Figure 4.1 .3 to prevent the current limiter from malfunctioning because of the noise at the current-limiting resistor. The delay time from when the current limiter senses a current exceeding the current limit to when the MOSFETS outputs shut down is determined by the sum of the filtering time (dead time) of the filter and the delay time of the control circuit:
Current-limiting delay time $\left(D_{t}\right)=$ filtering time (dead time) + control circuit delay If the current-limiting resistor has large noise, the dead time of the internal filter may be insufficient. In that case, an external filter should be added as shown below. Note that an external filter increases the current-limiting delay time (i.e., the time required for the MOSFET outputs to shut down).
Table 4.2 Current-limiting delay time (from the Electrical Characteristics table)

Unit: $\boldsymbol{\mu s}$					
Characteristics	Symbol	Min	Typ.	Max	
Current-limiting delay time	D_{t}	1.5	3	5	

Figure 4.1.3 Internal circuit of the RS pin

Figure 4.1.4 Overcurrent protection operation

Thermal shutdown

The HVIPD incorporates a thermal shutdown circuit to protect itself from excessive temperature. When an external factor or internally generated heat causes the chip temperature to rise to the thermal shutdown temperature (TSD), all the MOSFET outputs shut down regardless of the input states. Thermal shutdown has a hysteresis ($\triangle T S D$) of $50^{\circ} \mathrm{C}$ typical. When the chip temperature drops below (TSD - Δ TSD), the MOSFETs return to normal operation and turn on according to the input states.
The HVIPD senses its chip temperature at one position. Suppose that MOSFETs are heat sources. The time taken to shut down the MOSFETs differs, depending on the distance between a heat source and the temperature sensor. Therefore, the chip temperature may be higher than the thermal shutdown temperature (TSD) when the thermal shutdown circuit is tripped.

Figure 4.1.5 Thermal shutdown operation

SD function

An overcurrent condition may be detected by an external circuit. Setting the SD pin Low causes all the MOSFET outputs to shut down after a delay of $2 \mu \mathrm{~s}$ (typical). Setting the control signals to all-Lows releases the MOSFETs from shutdown mode.

4.2. $\mathrm{V}_{\text {REG }}$ power supply

A regulated supply voltage from the $\mathrm{V}_{\text {REG }}$ pin is generated from the V_{CC} power supply. $\mathrm{V}_{\text {REG }}$ can be used as a power supply not only for the internal circuit but also for an external control IC or other peripheral ICs.
Add an external capacitor to the $\mathrm{V}_{\text {REG }}$ pin to prevent oscillation. A capacitor with a value of 0.1
$\mu \mathrm{F}$ to $1 \mu \mathrm{~F}$ is recommended.
As $I_{\text {REG }}$ increases, $\mathrm{V}_{\text {REG }}$ becomes more susceptible to oscillation. Adjust the value of the capacitor if $\bigvee_{\text {REG }}$ oscillates under actual usage conditions. Table 4.2 shows the $\bigvee_{\text {REG }}$ output voltage.

Table 4.2 Regulator voltage (at $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{REG}}=30 \mathrm{~mA}$) Unit: V

Min	Typ.	Max
6.5	7	7.5

4.3. Power supply sequencing

We do not recommend the following power sequences:
At power-up: Powering up V_{CC} after V_{BB} and control signals
At power-down: Powering down V_{CC} before V_{BB} and control signals

Table 4.3.1 At power-up

$A t$ power-up			\bigcirc / \times
1	2	(3)	
V_{CC}	V_{BB}	Control signals	\bigcirc
V_{CC}	Control signals	V_{BB}	\bigcirc
V_{BB}	V_{CC}	Control signals	\bigcirc
V_{BB}	Control signals	V_{CC}	\times
Control signals	V_{CC}	V_{BB}	\bigcirc
Control signals	V_{BB}	V_{CC}	\times

Table 4.3.1 At power-down

At power-down			\bigcirc / \times
(1)	(2)	(3)	
$\mathrm{V}_{\text {cc }}$	$\mathrm{V}_{\text {BB }}$	Control signals	\times
$\mathrm{V}_{\text {cc }}$	Control signals	$\mathrm{V}_{\text {BB }}$	\times
$\mathrm{V}_{\text {BB }}$	V_{cc}	Control signals	\bigcirc
$\mathrm{V}_{\text {BB }}$	Control signals	$\mathrm{V}_{\text {cC }}$	\bigcirc
Control signals	$\mathrm{V}_{\text {cc }}$	$\mathrm{V}_{\text {BB }}$	\bigcirc
Control signals	$\mathrm{V}_{\text {BB }}$	$\mathrm{V}_{\text {cc }}$	\bigcirc

O: Recommended, \times : Unrecommended
Note that even when $V_{C C}$ and $V_{B B}$ are powered down, the device might be permanently damaged if the $V_{B B}$ line is disconnected by a relay or other means while the motor is running because this blocks a current recirculation path to V_{BB}.

4.4. Calculating power losses

This section shows how to calculate power losses that occur when the output current is sinusoidal.
$P=P_{\text {on }}+P_{t}+P_{i B B}+P_{i c c}$
(1) Conduction loss: $P_{o n}$
$P_{\text {on }}=P_{H}+P_{L}+P_{D}(W)$
-High-side MOSFET conduction loss: $\mathrm{P}_{\mathrm{H}}=\mathrm{I}^{2} \times \mathrm{RonH}_{\mathrm{on}} \times(1 / 8+\mathrm{D} / 3 \pi \times \cos \theta) \times 3$
-Low-side MOSFET conduction loss: $\mathrm{P}_{\mathrm{L}}=\mathrm{I}^{2} \times \mathrm{RonL} \times(1 / 8+\mathrm{D} / 3 \pi \times \cos \theta) \times 3$
\bullet Flywheel diode conduction loss: $P_{D}=I \times V_{F} \times(1 / 8-D / 3 \Pi \times \cos \theta) \times 6$
I_{p} : Peak motor winding current (A)
$\mathrm{R}_{\text {onн }} / \mathrm{R}_{\text {onL }}$: On-resistance of the output MOSFET (Ω)
V_{F} : Forward voltage drop of the FRD (V)
D: PWM duty cycle (on-duty cycle of the high-side MOSFETs)
θ : Power factor
(2) MOSFET switching loss: Pt_{t}
$P_{t}=\left(W_{\text {ton }}+W_{\text {toff }}\right) \times \mathrm{f}_{\mathrm{c}} / \pi \times 6(\mathrm{~W})$

- $W_{\text {ton }}$: Turn-on loss ($\mu \mathrm{J}$ per pulse)
- $W_{\text {toff: }}$ Turn-off loss ($\mu \mathrm{J}$ per pulse)
$\bullet f \mathrm{c}$: Switching frequency (Hz)
(3) V_{BB} power loss: $\mathrm{P}_{\mathrm{ibB}}$
$\mathrm{P}_{\mathrm{iBB}}=\mathrm{V}_{\mathrm{BB}} \times \mathrm{I}_{\mathrm{BB}}(\mathrm{W})$
$\mathrm{I}_{\mathrm{BB}}=\mathrm{V}_{\mathrm{BB}}$ supply current $(\mathrm{A}) *$ Supply current when all phases are off
(4) Steady-state power loss: Picc
$\mathrm{P}_{\mathrm{icc}}=\mathrm{V}_{\mathrm{cc}} \times \mathrm{I}_{\mathrm{cc}}(\mathrm{W})$
$\mathrm{I}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}$ supply current (A) * Supply current during normal operation

Figure 4.4 Motor current waveform for power loss calculation

5. Application circuit example

5.1. Application circuit example

Figure 5.1 Application circuit example (for tripping the current limiter with an HVIPD)

Figure 5.2 Application circuit example (for tripping the current limiter with a motor controller IC or an MCU)

Table 5.1 shows typical external parts.

Table 5.1 External parts for the application circuit

Part	Recommended Value	Purpose	Note
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$	$25 \mathrm{~V} / 2.2 \mu \mathrm{~F}$	Bootstrap capacitors	(Note 1)
C_{4}	$25 \mathrm{~V} / 10 \mu \mathrm{~F}$	V $_{\text {CC }}$ voltage stability	(Note 2)
C_{5}	$25 \mathrm{~V} / 0.1 \mu \mathrm{~F}$	V $_{\text {CC }}$ surge absorption	(Note 2)
C_{6}	$25 \mathrm{~V} / 1 \mu \mathrm{~F}$	V REG voltage stability	(Note 2)
C_{7}	$25 \mathrm{~V} / 1000 \mathrm{pF}$	V REG surge absorption	(Note 2)
R_{1}	$5.1 \mathrm{k} \Omega$	DIAG pull-up resistor	(Note 3)
R_{2}	$10 \mathrm{k} \Omega$	SD pull-up resistor	(Note 4)
R_{3}	$0.35 \Omega \pm 1 \%(1 \mathrm{~W})$	Overcurrent detection	(Note 5)

Note 1: The required bootstrap capacitor value varies, depending on the motor drive conditions. The capacitor is biased by V_{Cc} and must be sufficiently derated.

Calculating the value of the bootstrap capacitor required
$C B=I B \times$ maximum high-side drive period $/\left(V_{C C}-V_{F}(B S D)+V_{F}(F R D)-13.5\right)(F)$
CB : Minimum capacitance of the bootstrap capacitor
IB: Maximum supply current of the high-side driver
$V_{F}(B S D)$: Forward voltage of the bootstrap diode
V_{F} (FRD): Forward voltage of the flywheel diode

Note 2: The capacitor values should be adjusted if noise occurs under actual usage conditions. Place the capacitors as close as possible to the IC leads to minimize ripple noise.

Note 3: The DIAG pin has an open-drain configuration. When unused, the DIAG pin should be connected to GND. The maximum rated current of the DIAG pin is 20 mA . Therefore, when it is pulled up to 7 V , the minimum resistor value is 350Ω.

Note 3 and Note 4: The recommended pull-up resistor values are:
$\mathrm{R}_{1}: 1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$
$\mathrm{R}_{2}: 5 \mathrm{k} \Omega$ to $15 \mathrm{k} \Omega$

Note 5: The current-sensing level is expressed as: $\mathrm{I}_{\mathrm{O}}=\mathrm{V}_{\mathrm{R}} \div \mathrm{R}_{3}$ ($\mathrm{V}_{\mathrm{R}}=0.5 \mathrm{~V}$ typical)
In order that IS1/IS2/IS3 terminals which connects shunt resistance may avoid malfunction and destruction, please wiring length be short and design.
When wiring length becomes long, please attach the diode for surge protection between IS1/IS2/IS3 terminals -GND terminal.

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA".
Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY ANDIOR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE ANDIOR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

Toshiba Electronic Devices \& Storage Corporation

https://toshiba.semicon-storage.com/

