OR dst, src

< Logical OR >

Operation $: d s t \leftarrow d s t$ OR src
Description : Ors the contents of dst with those of sre and loads the result to dst.
(Truth table)

A	B	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

Details :
Size Mnemonic Code

Byte	Word	Long word			
\bigcirc	\bigcirc	\bigcirc	OR	R, r	
\bigcirc	\bigcirc	\bigcirc	OR	r, \#	
					$1,1,0,0,1,1,1,0$
					\#<7:0>
					\#<15:8>
					\#<23:16>
					\#<31:24>
\bigcirc	\bigcirc	\bigcirc	OR	$\mathrm{R},(\mathrm{mem})$	
\bigcirc	\bigcirc	\bigcirc	OR	(mem), R	
					$1,1,1,{ }^{0}, 1$ 1 R ,
\bigcirc	\bigcirc	\times	$\mathrm{OR}<\mathrm{W}>$	(mem), \#	
					\#<7:0>
					\#<15:8>

$S=$ MSB value of the result is set.
$Z=1$ is set when the result is 0 , otherwise 0 .
$\mathrm{H}=0$ is set.
$\mathrm{V}=1$ is set when the parity (number of 1 s) of the result is even, 0 when odd. When the operand is 32 -bit, an undefined value is set.
$\mathrm{N}=$ Cleared to 0.
C $=$ Cleared to 0 .

Execution example: OR HL, IX
When the HL register $=7350 \mathrm{H}$ and the IX register is 3456 H , execution sets the HL register to 7756 H .

	0111	0011	0101	0000	\leftarrow	HL register (before execution)
OR)	0011	0100	0101	0110	\leftarrow	IX register (before execution)
	0111	0111	0101	0110	\leftarrow	HL register (after execution)

ORCF num, sre

< OR Carry Flag >

Operation : CY \leftarrow CY OR $\operatorname{src}<$ num $>$
Description : Ors the contents of the carry flag with those of bit num of src and loads the result to the carry flag.

Details :

	Size		Mnemonic		Code
Byte	Word	Long word			
\bigcirc	\bigcirc	\times	ORCF	\#4, r	$1,1,0$ z 1
					00, $0,11,0,0{ }^{1}$
\bigcirc	\bigcirc	\times	ORCF	A, r	1,1 0 z 1 r
\bigcirc	\times	\times	ORCF	\#3, (mem)	
					$1,0,0,0,181^{\# 3}$
\bigcirc	\times	\times	ORCF	A, (mem)	

Note : When bit num is specified by the A register, the value of the lower 4 bits of the A register is used as bit num. When the operand is a byte and the value of the lower bits of bit num is from 8 to 15 , the result is undefined.
flag :

S	Z	H	V	N	C
-	-	-	-	-	*

$\mathrm{S}=$ No change
Z $=$ No change
$\mathrm{H}=$ No change
$\mathrm{V}=$ No change
$\mathrm{N}=$ No change
$\mathrm{C}=$ The result of or-ing the contents of the carry flag with those of bit num of src is set.

Execution example: ORCF 6,(100H)
When the contents of memory at address $100 \mathrm{H}=01000000 \mathrm{~B}$ (binary) and the carry flag $=0$, execution sets the carry flag to 1 .

PAA dst
 < Pointer Adjust Accumulator >

Operation : if dst $<\mathrm{LSB}>=1$ then dst \leftarrow dst +1
Description : Increments dst by 1 when the LSB of dst is 1 . Does nothing when the LSB of dst is 0 .
Used to make the contents of dst even. With the TLCS-900 series, when accessing 16- or 32 -bit data in memory, if the data are loaded from an address starting with an even number, the number of bus cycles is 1 less than that of the data loaded from an address starting with an odd number.

Details :

$$
\text { Size } \quad \text { Mnemonic } \quad \text { Code }
$$

$\mathrm{S}=$ No change
Z $=$ No change
$\mathrm{H}=$ No change
$\mathrm{V}=$ No change
$\mathrm{N}=$ No change
C = No change

Execution example: PAA XIZ
When the XIZ register $=00234567 \mathrm{H}$, execution increments the XIZ register by 1 so that it becomes 00234568 H .

POP dst

$$
<\text { Pop }>
$$

Operation $\quad: \mathrm{dst} \leftarrow(\mathrm{XSP}+)\left[\begin{array}{ll}\text { In bytes } & : \mathrm{dst} \leftarrow(\mathrm{XSP}), \mathrm{XSP} \leftarrow \mathrm{XSP}+1 \\ \text { In words } & : \mathrm{dst} \leftarrow(\mathrm{XSP}), \mathrm{XSP} \leftarrow \mathrm{XSP}+2 \\ \text { In long words } & : \mathrm{dst} \leftarrow(\mathrm{XSP}), \mathrm{XSP} \leftarrow \mathrm{XSP}+4\end{array}\right]$
Description : First loads the contents of memory address specified by the stack pointer XSP to dst. Then increments the stack pointer XSP by the number of bytes in the operand.

Details :

$$
\text { Size } \quad \text { Mnemonic }
$$

Code

Byte	Word	Long word			
\bigcirc	\times	\times	POP	F	
\bigcirc	\times	\times	POP	A	
\times	\bigcirc	\bigcirc	POP	R	$0,1,0$ s 1 R_{1}
\bigcirc	\bigcirc	\bigcirc	POP	r	
\bigcirc	\bigcirc	\times	$\mathrm{POP}<\mathrm{W}>$	(mem)	1 m 1 1 $\mathrm{~m}, \mathrm{~m}$ m m 0 0 0 0 0 0 1 z 0

Flags : | S |
| :---: |
| |
| |
| |

$\mathrm{S}=$ No change
$\mathrm{Z}=$ No change
$\mathrm{H}=$ No change
$\mathrm{V}=$ No change
$\mathrm{N}=$ No change
$\mathrm{C}=$ No change
(Note) Executing POP F changes all flags.

Execution example: POP IX
When the stack pointer XSP $=0100 \mathrm{H}$, the contents of address 100 H $=56 \mathrm{H}$, and the contents of address $101 \mathrm{H}=78 \mathrm{H}$, execution sets the IX register to 7856 H and the stack pointer XSP to 0102 H .

POP SR

< Pop SR >

Operation : $\mathrm{SR} \leftarrow(\mathrm{XSP}+)$
Description : Loads the contents of the address specified by the stack pointer XSP to status register. Then increments the contents of the stack pointer XSP by 2.

Note1: Please execute this instruction during DI condition. The timing for executing this instruction is delayed by several states than that for fetching the instruction. This is because an instruction queue (4 bytes) and pipeline processing method is used.
Note2: When this instruction is executed, change all bits in the SR. If there are the bits which must not change (example: the minimum mode is not supported for $900 / \mathrm{H}$, therefor, the $\mathrm{SR}<\mathrm{MAX}>$ register must be set to " 1 "), prevent the bits from changing.

PUSH SR
 <Push SR>

Operation : $(-\mathrm{XSP}) \leftarrow \mathrm{SR}$
Description : Decrements the contents of the stack pointer XSP by 2. Then loads the contents of status register to the memory address specified by the stack pointer XSP.

Details :

	Size Word	Long word	Mnemonic	Code
\times	\bigcirc	\times	PUSH	SR

Flags \(\begin{gathered}:

\end{gathered}\)| | S | Z | H | N | C | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | - | - | - | - | - |

$\mathrm{S}=$ No change
Z $=$ No change
$\mathrm{H}=\mathrm{No}$ change
$\mathrm{V}=$ No change
$\mathrm{N}=$ No change
C = No change

PUSH src

< Push >

Operation : $(-\mathrm{XSP}) \leftarrow$ src $\quad\left[\begin{array}{l}\text { In bytes } \quad: \mathrm{XSP} \leftarrow \mathrm{XSP}-1,(\mathrm{XSP}) \leftarrow \mathrm{src} \\ \text { In words }: \quad: \mathrm{XSP} \leftarrow \mathrm{XSP}-2,(\mathrm{XSP}) \leftarrow \mathrm{src} \\ \text { In long words }: \mathrm{XSP} \leftarrow \mathrm{XSP}-4,(\mathrm{XSP}) \leftarrow \mathrm{src}\end{array}\right]$
Description : Decrements the stack pointer XSP by the byte length of the operand. Then loads the contents of src to the memory address specified by the stack pointer XSP.

Details :

> Mnemonic

Code
Byte Word Long word
$\bigcirc \times$
PUSH F

A

$0,0,0,1,1,0,0$, 0		
0, 0,1	s 1	R

1, 1		$\mathrm{z}_{1} \mathrm{z}^{\text {z }}$	1			r	
$0,0,0,0,0,1,0$, 0							

PUSH < W > \#

0 , $^{0}{ }^{0}$, 0, 1 , 0	z 11
\#<7:0>	
\#<15:8>	

$\mathrm{S}=$ No change
Z = No change
$\mathrm{H}=$ No change
$\mathrm{V}=$ No change
$\mathrm{N}=$ No change
C $=$ No change

Execution example: PUSH HL

When the stack pointer XSP $=0100 \mathrm{H}$ and the HL register $=1234 \mathrm{H}$, execution changes address 00 FEH to 34 H , address 00 FFH to 12 H , and sets the stack pointer XSP to 00FEH.

RCF
 $<$ Reset Carry Flag >

Operation : $\mathrm{CY} \leftarrow 0$
Description : Resets the carry flag to 0 .

Details :

$$
\begin{array}{ll}
\text { Mnemonic } & \text { Code }
\end{array}
$$

RCF

| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{aligned} \text { Flags } & :$| | S | Z | H | V | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N | C | | | | |
| - | - | 0 | - | 0 | 0 |\end{aligned}

$\mathrm{S}=$ No change
$\mathrm{Z}=$ No change
$\mathrm{H}=$ Reset to 0 .
$\mathrm{V}=$ Reset to 0.
$\mathrm{N}=$ No change
C $=$ Reset to 0 .

RES num, dst
 < Reset >

Operation : dst <num $>\leftarrow 0$
Description : Resets bit num of dst to 0 .

Details :

$$
\text { Size } \quad \text { Mnemonic }
$$

Code

$$
\mathrm{S}=\mathrm{No} \text { change }
$$

Z = Nochange
H = No change
$\mathrm{V}=$ Nochange
$\mathrm{N}=$ Nochange
C = No change

Execution example: RES 5,(100H)
When the contents of memory at address $100 \mathrm{H}=00100111 \mathrm{~B}$ (binary), execution sets the contents to 00000111B (binary).

RET condition

< Return >

Operation : If cc is true, then the 32 -bit $\mathrm{PC} \leftarrow$ (XSP), XSP $\leftarrow \mathrm{XSP}+4$.
Description : Pops the return address from the stack area to the program counter when the operand condition is true.

Details :

$$
\text { Mnemonic } \quad \text { Code }
$$

RET	$0{ }^{0} 0{ }^{0} 0{ }^{0}{ }^{0}{ }^{1}$, 1,1 , 0
RET cc	1, 0 , ${ }^{1}$, ${ }^{1} \underbrace{0}$, 0, ${ }^{0}$, 0
	1, $1,1,1$, ${ }^{\text {, }}$,

Flags : \begin{tabular}{c}
S

\hline-

$|$

\& Z \& \multicolumn{1}{c}{ H } \& \multicolumn{1}{c}{ N }

\hline \& \& - \& - \& - \& -

\hline
\end{tabular}

$$
\begin{aligned}
& \mathrm{S}=\text { No change } \\
& \mathrm{Z}=\text { No change } \\
& \mathrm{H}=\text { No change } \\
& \mathrm{V}=\text { No change } \\
& \mathrm{N}=\text { No change } \\
& \mathrm{C}=\text { No change }
\end{aligned}
$$

Execution example: RET
When the stack pointer XSP $=0 \mathrm{FCH}$ and the contents of memory at address $0 \mathrm{FCH}=9000 \mathrm{H}$ (long word data), execution sets the stack pointer XSP to 100 H and jumps (returns) to address 9000 H .

RETD num

< Return and Deallocate >

Operation $: 32$-bit $\mathrm{PC} \leftarrow(\mathrm{XSP}), \mathrm{XSP} \leftarrow \mathrm{XSP}+4$, XSP $\leftarrow \mathrm{XSP}+$ num
Description : Pops the return address from the stack area to the program counter. Then increments the stack pointer XSP by signed num.

Details :

Mnemonic		Code
RETD	d16	
		d<7:0>
		$\mathrm{d}<15: 8>$

$\mathrm{S}=$ No change
Z $=$ No change
$\mathrm{H}=$ No change
$\mathrm{V}=$ No change
$\mathrm{N}=$ No change
C $=$ No change

Execution example: RETD 8
When the stack pointer XSP $=0$ FCH and the contents of memory at address $0 \mathrm{FCH}=9000 \mathrm{H}$ (long word data) in minimum mode, execution sets the stack pointer XSP to $0 \mathrm{FCH}+4+8 \rightarrow 108 \mathrm{H}$ and jumps (returns) to address 9000 H .
Usage of the RETD instruction is shown below. In this example, the 8bit parameter is pushed to the stack before the subroutine call. After the subroutine processing complete, the used parameter area is deleted by the RETD instruction.

RETI

$<$ Return from Interrupt >

Operation $\quad: \quad \mathrm{SR} \leftarrow(\mathrm{XSP}), 32$-bit $\mathrm{PC} \leftarrow(\mathrm{XSP}+2), \mathrm{XSP} \leftarrow \mathrm{XSP}+6$
After the above operation is executed. the $900 / H$ decrement a value of interrupt nesting counter INTNEST by 1:

Description : Pops data from the stack area to status register and program counter.
After the above operation is executed, the $900 / 1$ decrement a value of interrupt nesting counter INTNEST by i:

Details :
Mnemonic
Code

RETI

$0 \perp^{0} \perp^{0} \perp^{0} \perp^{0} \nmid 1,1,10$

$S=$ The value popped from the stack area is set.
$\mathrm{Z}=$ The value popped from the stack area is set.
$\mathrm{H}=$ The value popped from the stack area is set.
$\mathrm{V}=$ The value popped from the stack area is set.
$\mathrm{N}=$ The value popped from the stack area is set.
$\mathrm{C}=$ The value popped from the stack area is set.

RL num, dst
 < Rotate Left >

Operation $\quad: \quad\{C Y \& d s t \leftarrow$ left rotates the value of CY \& dst $\}$ Repeat num
Description : Rotates left the contents of the linked carry flag and dst. Repeats the number of times specified in num.

Description figure:

Details :

> Mnemonic

Code

Note: When the number of rotates is specified by the A register, the value of the lower 4 bits of the A register is used. Specifying 0 rotates 16 times.
When dst is memory, rotating is performed only once.

Flags : | | S | Z | | H | V | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $*$ | $*$ | 0 | $*$ | 0 | $*$ | |

$S=$ MSB value of dst after rotate is set.
$\mathrm{Z}=1$ is set when the contents of dst after rotate is 0 , otherwise 0 .
$\mathrm{H}=$ Reset to 0 .
$\mathrm{V}=1$ is set when the parity (number of 1 s) of dst is even after rotate, otherwise 0 . If the operand is 32 bits , an undefined value is set.
$\mathrm{N}=$ Reset to 0 .
$\mathrm{C}=$ The value after rotate is set.

Execution example: RL 4, HL
When the HL register $=6230 \mathrm{H}$ and the carry flag $=1$, execution sets the HL register to 230 BH and the carry flag to 0 .

RLC num, dst

< Rotate Left without Carry >

Operation $: \quad\{\mathrm{CY} \leftarrow \mathrm{dst}<\mathrm{MSB}>, \mathrm{dst} \leftarrow$ left rotate value of dst $\}$ Repeat num
Description : Loads the contents of the MSB of dst to the carry flag and rotates left the contents of dst. Repeats the number of times specified in num.

Description figure :

Details :

$$
\text { Size } \quad \text { Mnemonic }
$$

Code

Note: When the number of rotates is specified by the A register, the value of the lower 4 bits of the A register is used. Specifying 0 rotates 16 times.
When dst is memory, rotating is performed only once.

Flags :		S	Z	V	N	C	
	$*$	$*$	0	$*$	0	$*$	

$S=$ MSB value of dst after rotate is set.
$\mathrm{Z}=1$ is set when the contents of dst after rotate is 0 , otherwise, 0 .
$\mathrm{H}=$ Reset to 0 .
$\mathrm{V}=1$ is set when the parity (number of 1 s) of dst is even after rotate. If the operand is 32 bits, an undefined value is set.
$\mathrm{N}=$ Reset to 0 .
$C=$ MSB value of dst before the last rotate is set.

Execution example: RLC 4, HL
When the HL register $=1230 \mathrm{H}$, execution sets the HL register to 2301 H and the carry flag to 1 .

RLD dst1, dst2

< Rotate Left Digit >

Operation $: \quad \mathrm{dst} 1<3: 0>\leftarrow \mathrm{dst} 2<7: 4>$, dst $2<7: 4>\leftarrow \mathrm{dst} 2<3: 0>$, dst2<3:0> $<$ dst1 $<3: 0>$

Description : Rotates left the lower 4 bits of dst1 and the contents of dst2 in units of 4 bits.

Description figure :

Details :
Size Mnemonic Code
Byte Word Long word
$\times \quad \times \quad$ RLD $\quad[\mathrm{A}],(\mathrm{mem})$

$\mathrm{S}=\mathrm{MSB}$ value of the A register after rotate is set.
$\mathrm{Z}=1$ is set when the contents of the A register after the rotate are 0 , otherwise 0 .
$\mathrm{H}=$ Reset to 0.
$\mathrm{V}=1$ is set when the parity (number of 1 s) of the A register is even after the rotate, otherwise 0 .
$\mathrm{N}=$ Reset to 0.
C $=$ No change
Execution example: RLD A, (100H)
When the A register $=12 \mathrm{H}$ and the contents of memory at address $100 \mathrm{H}=34 \mathrm{H}$, execution sets the A register to 13 H and the contents of memory at address 100 H to 42 H .

RR num, dst

< Rotate Right >

Operation $\quad: \quad\{C Y \& d s t \leftarrow$ right rotates the value of CY \& dst $\}$ Repeat num
Description : Rotates right the linked contents of the carry flag and dst. Repeats the number of times specified in num.

Description figure:

Note : When the number of rotates is specified by the A register, the value of the lower 4 bits of the A register is used. Specifying 0 rotates 16 times.
When dst is memory, rotating is performed only once.

$S=$ MSB value of dst after rotate is set.
$\mathrm{Z}=1$ is set when the contents of dst after rotate is 0 , otherwise 0 .
$\mathrm{H}=$ Reset to 0 .
$\mathrm{V}=1$ is set when the parity (number of 1 s) of dst is even after the rotate, otherwise 0 . If the operand is 32 bits, an undefined value is set.
$\mathrm{N}=$ Reset to 0 .
$\mathrm{C}=$ The value after rotate is set.

Execution example: RR 4, HL
When the HL register $=6230 \mathrm{H}$ and the carry flag $=1$, execution sets the HL register to 1623 H and the carry flag to 0.

RRC num, dst

< Rotate Right without Carry >

Operation $:\{\mathrm{CY} \leftarrow \mathrm{dst}<\mathrm{LSB}>, \mathrm{dst} \leftarrow$ right rotate value of dst $\}$ Repeat num
Description : Loads the contents of the LSB of dst to the carry flag and rotates the contents of dst to the right. Repeats the number of times specified in num.

Description figure:

Details :

$$
\begin{array}{lll}
\text { Size } & \text { Mnemonic } & \text { Code }
\end{array}
$$

Note : When the number of rotates num is specified by the A register, the value of the lower 4 bits of the A register is used as the number of rotates.
Specifying 0 rotates 16 times. When dst is memory, rotating is only once.

Flags :		S	Z	H	N	C	
	$*$	$*$	0	$*$	0	$*$	

$S=$ MSB value of dst after rotate is set.
$\mathrm{Z}=1$ is set when the contents of dst after rotate is 0 , otherwise 0 .
$\mathrm{H}=$ Reset to 0 .
$\mathrm{V}=1$ is set when the parity (number of 1 s) of dst is even after rotate, otherwise 0 . If the operand is 32 bits, an undefined value is set.
$\mathrm{N}=$ Reset to 0 .
$C=$ MSB value of dst before the last rotate is set.

Execution example: RRC 4, HL
When the HL register $=1230 \mathrm{H}$, execution sets the HL register to 0123 H and the carry flag to 0 .

RRD dst1, dst2

< Rotate Right Digit >

Operation $: \quad \mathrm{dst} 1<3: 0>\leftarrow \mathrm{dst} 2<3: 0>, \mathrm{dst} 2<7: 4>\leftarrow \mathrm{dst} 1<3: 0>$, $\mathrm{dst} 2<3: 0>\leftarrow \mathrm{dst} 2<7: 4>$

Description : Rotates right the lower 4 bits of dst1 and the contents of dst2 in units of 4 bits.

Details : Size Mnemonic Code
\qquad
$\times \quad \times \quad$ RRD $\quad[\mathrm{A}$,$] (mem)$

Flags : | | S | Z | | H | V |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $*$ | N | C | | | |
| | $*$ | $*$ | 0 | $*$ | 0 |

$\mathrm{S}=\mathrm{MSB}$ value of the A register after rotate is set.
$\mathrm{Z}=1$ is set when the contents of the A register after rotate is 0 , otherwise 0 .
$\mathrm{H}=$ Reset to 0 .
$\mathrm{V}=1$ is set when the parity (number of 1 s) of the A register is even after rotate, otherwise 0 .
$\mathrm{N}=$ Reset to 0 .
$\mathrm{C}=$ No change
Execution example: RRD A, (100H)
When the A register $=12 \mathrm{H}$ and the contents of memory at address $100 \mathrm{H}=34 \mathrm{H}$, execution sets the A register to 14 H and the contents of memory at address 100 H to 23 H .

SBC dst, src

< Subtract with Carry >

Operation : dst $\leftarrow \mathrm{dst}-\mathrm{src}-\mathrm{CY}$
Description : Subtracts the contents of src and the carry flag from those of dst, and loads the result to dst.

Details : Size Mnemonic Code

Flags : | | S | Z | | H | V | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $*$ | $*$ | $*$ | $*$ | 1 | $*$ | |

$S=$ MSB value of the result is set.
$Z=1$ is set when the result is 0 , otherwise 0 .
$\mathrm{H}=1$ is set when a borrow from bit 3 to bit 4 occurs as a result, otherwise 0 .
When the operand is 32 bits, an undefined value is set.
$\mathrm{V}=1$ is set when an overflow occurs as a result, otherwise 0 .
$\mathrm{N}=1$ is set.
C $=1$ is set when a borrow from the MSB occurs as a result, otherwise 0 .

Execution example: SBC HL, IX
When the HL register is 7654 H , the IX register $=5000 \mathrm{H}$, and the carry flag $=1$, execution sets the HL register to 2653 H .

SCC condition, dst

< Set Condition Code >

Operation : If cc is true, then dst $\leftarrow 1$ else dst $\leftarrow 0$.
Description : Loads 1 to dst when the operand condition is true; when false, 0 is loaded to dst.

Details : Size Mnemonic Code

Flags : | S |
| :---: |
| |
| |

S = No change
Z = No change
$\mathrm{H}=$ Nochange
$\mathrm{V}=$ Nochange
$\mathrm{N}=$ Nochange
C = No change

Execution example: SCC OV, HL
When the contents of the V flag $=1$, execution sets the HL register to 0001H.

SCF
 < Set Carry Flag >

Operation $\quad: \quad \mathrm{CY} \leftarrow 1$
Description : Sets the carry flag to 1.

Details :

$$
\text { Mnemonic } \quad \text { Code }
$$

SCF

$\mathrm{S}=$ No change
$\mathrm{Z}=$ No change
$\mathrm{H}=$ Reset to 0 .
$\mathrm{V}=$ No change
$\mathrm{N}=$ Reset to 0.
$\mathrm{C}=$ Set to 1 .

SET num, dst

< Set >

Operation $:$ dst $<$ num $>\leftarrow 1$
Description : Sets bit num of dst to 1.

Details :

	Size		Mnemonic		Code				
Byte	Word	Long word							
\bigcirc	\bigcirc	\times	SET	\#4, r		$1{ }_{1} 1^{\text {r }}$,			
						$0,0,0,18$			
					$0 \perp^{0} \perp^{0}{ }^{1} 0$	$\\|^{\#}{ }^{4}$ ।			
\bigcirc	\times	\times	SET	\#3, (mem)	1 m 1 1	$\mathrm{m}_{1} \mathrm{~m}_{1} \mathrm{~m}_{1} \mathrm{~m}$			
					${ }_{1}\left\\|^{0}\right\\|_{1}^{1} \\|^{1}$,	$1{ }^{\text {1 }}$ \#3 ${ }^{\text {l }}$			

Flags : | S |
| :---: |
| |
| |

$\mathrm{S}=$ No change
Z = No change
$\mathrm{H}=$ No change
$\mathrm{V}=$ No change
$\mathrm{N}=$ No change
C = No change

Execution example: SET $5,(100 \mathrm{H})$
When the contents of memory at address $100 \mathrm{H}=00000000 \mathrm{~B}$ (binary), execution sets the contents of memory at address 100 H to 00100000 B (binary).

SLA num, dst

< Shift Left Arithmetic >

Operation : $\{C Y \leftarrow$ dst $<$ MSB $>$, dst \leftarrow left shift value of dst, dst $<$ LSB $>\leftarrow 0\}$ Repeat num

Description : Loads the contents of the MSB of dst to the carry flag, shifts left the contents of dst, and loads 0 to the LSB of dst. Repeats the number of times specified in num.
Description chart: $\quad \mathrm{CY} \longleftarrow \mathrm{MSB} \leftarrow \mathrm{LSB} \longleftarrow$ " \longleftarrow "
Details :

> Mnemonic

Code

Note : When the number of shifts, num, is specified by the A register, the value of the lower 4 bits of the A register is used. Specifying 0 shifts 16 times. When dst is memory, shifting is performed only once.

$S=M S B$ value of dst after shift is set.
$Z=1$ is set when the contents of dst after shift is 0 , otherwise 0 .
$\mathrm{H}=$ Reset to 0 .
$\mathrm{V}=1$ is set when the parity (number of 1 s) of dst is even after shifting, otherwise 0 . If the operand is 32 bits, an undefined value is set.
$\mathrm{N}=$ Reset to 0 .
C $=$ MSB value of dst before the last shift is set.

Execution example: SLA 4, HL
When the HL register $=1234 \mathrm{H}$, execution sets the HL register to 2340 H and the carry flag to 1 .

SLL num, dst

$<$ Shift Left Logical >

Operation $: \quad\{C Y \leftarrow d s t<$ MSB $>$, dst \leftarrow left shift value of dst, dst $<$ LSB $>\leftarrow 0\}$ Repeat num

Description : Loads the contents of the MSB of dst to the carry flag, shifts left the contents of dst, and loads 0 to the MSB of dst. Repeats the number of times specified in num.

Description chart: \qquad
Details :
Size
Mnemonic
Code
Byte Word Long word

\bigcirc	\bigcirc	\bigcirc	SLL	\#4, r	1,1 $\mathrm{z}_{1} \mathrm{z}$	$1{ }^{1}+{ }^{\text {r }}$
					$0{ }^{1}{ }^{1}$, 0 , 0	\# ${ }^{4}{ }^{1}$
\bigcirc	\bigcirc	\bigcirc	SLL	A, r	1,1 z z 1 1	$1{ }_{1}{ }_{1}{ }^{\text {r }}$
					$1,1,1,1,1$	$1,1,1,0$
\bigcirc	\bigcirc	\times	SLL < W >	(mem)	1 m 0 z m 0	$\mathrm{m}_{1} \mathrm{~m}_{1} \mathrm{~m}_{1} \mathrm{~m}$
					$0,1,1,1$, ${ }^{1}$	$1,1,1,0$

Note : When the number of shifts, num, is specified by the A register, the value of the lower 4 bits of the A register is used. Specifying 0 shifts 16 times. When dst is memory, shifting is performed only once.

Flags : | | S | Z | | H | V | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $*$ | $*$ | 0 | $*$ | 0 | $*$ |

$S=$ MSB value of dst after shift is set.
$\mathrm{Z}=1$ is set when the contents of dst after shift is 0 , otherwise 0 .
$\mathrm{H}=$ Reset to 0 .
$\mathrm{V}=1$ is set when the parity (number of 1 s) of dst is even after shifting, otherwise 0 . If the operand is 32 bits, an undefined value is set.
$\mathrm{N}=$ Reset to 0 .
$C=$ MSB value of dst before the last shift is set.

Execution example: SLL 4, HL
When the HL register $=1234 \mathrm{H}$, execution sets the HL register to 2340 H and the carry flag to 1 .

SRA num, dst

< Shift Right Arithmetic >

Operation $\quad:\{\mathrm{CY} \leftarrow \mathrm{dst}<\mathrm{MSB}>$, dst \leftarrow right shift value of dst, dst $<\mathrm{MSB}>$ is fixed $\}$ Repeat num

Description : Loads the contents of the LSB of dst to the carry flag and shifts right the contents of dst (MSB is fixed). Repeats the number of times specified in num.

Description chart:

Details :
Size Mnemonic Code

Byte	Word	Long word					
\bigcirc	\bigcirc	\bigcirc	SRA	\#4, r	1,1 z z 1 1	$1{ }_{1} \\|_{1}{ }^{\text {r }}$	
						$1,1,0,1$	
						\#, ${ }^{4}$,	
\bigcirc	\bigcirc	\bigcirc	SRA	A, r		1 1	
					${ }_{1} \wedge^{1} \\|_{1}{ }^{1}{ }^{1}$,	$1,1,0,1$	
\bigcirc	\bigcirc	\times	SRA < W >	(mem)	1 m 0 z	$\mathrm{m}_{1} \mathrm{~m}_{1} \mathrm{~m}_{1} \mathrm{~m}$	
						$1,1,0,1$	

Note : When the number of shifts, num, is specified by the A register, the value of the lower 4 bits of the A register is used. Specifying 0 shifts 16 times. When dst is memory, shifting is performed only once.

$S=$ MSB value of dst after shift is set.
$\mathrm{Z}=1$ is set when the contents of dst after shift is 0 , otherwise 0 .
$\mathrm{H}=$ Reset to 0 .
$\mathrm{V}=1$ is set when the parity (number of 1 s) of dst is even after shift, otherwise 0 . If the operand is 32 bits , an undefined value is set.
$\mathrm{N}=$ Reset to 0 .
$\mathrm{C}=\mathrm{LSB}$ value of dst before the last shift is set.
Execution example: SRA 4, HL
When the HL register $=8230 \mathrm{H}$, execution sets the HL register to F823H and the carry flag to 0 .

SRL num, dst

< Shift Right Logical >

Operation $: \quad\{\mathrm{CY} \leftarrow$ dst $<\mathrm{LSB}>$, dst \leftarrow right shift value of dst, dst $<\mathrm{MSB}>\leftarrow 0\}$ Repeat num

Description : Loads the contents of the LSB of dst to the carry flag, shifts right the contents of dst, and loads 0 to the MSB of dst. Repeats the number of times specified in num.
Description chart: $\quad 0 " \longrightarrow$ MSB $\quad \rightarrow \quad$ LSB \longrightarrow CY
Details :

Size
Byte Word Long word

Note : When the number of shifts, num, is specified by the A register, the value of the lower 4 bits of the A register is used. Specifying 0 shifts 16 times. When dst is memory, shifting is performed only once.

Flags : | | S | Z | V | N | C | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $*$ | $*$ | 0 | $*$ | 0 | $*$ |

$S=$ MSB value of dst after shift is set.
$\mathrm{Z}=1$ is set when the contents of dst after shift is 0 , otherwise 0 .
$\mathrm{H}=$ Reset to 0 .
$\mathrm{V}=1$ is set when the parity (number of 1 s) of dst is even after shift, otherwise 0 . If the operand is 32 bits, an undefined value is set.
$\mathrm{N}=$ Reset to 0.
$\mathrm{C}=\mathrm{LSB}$ value of dst before the last shift is set.

Execution example: SRL 4, HL
When the HL register $=1238 \mathrm{H}$, execution sets the HL register to 0123 H and the carry flag to 1 .

STCF num, dst

$<$ Store Carry Flag >

Operation : dst<num $>\leftarrow$ CY
Description : Loads the contents of the carry flag to bit num of dst.

Details :

	Size		Mnemonic		Code			
Byte	Word	Long word						
\bigcirc	\bigcirc	\times	STCF	\#4, r	1,1 0 z 1 0 0 1			
					- ${ }_{0}^{1}$	$0,1,0,0$		
					$0{ }^{0} 0$, 0 , 0	\# ${ }^{1}{ }^{4}$ 」		
\bigcirc	\bigcirc	\times	STCF	A, r	1,1 0 z 0 0 0 1	1 ${ }^{\text {r }}$ /		
					${ }_{0}{ }^{0}{ }^{1}{ }^{1} \\|^{0}{ }^{1}$	$1,1,0,0$		
\bigcirc	\times	\times	STCF	\#3, (mem)	1 m 1 1 1 1 0 1	$\mathrm{m}_{1} \mathrm{~m}_{1} \mathrm{~m}_{1} \mathrm{~m}$		
					$1{ }^{1}{ }^{0}\left\\|^{1}\right\\|^{0}$,	$0{ }^{\text {0 }}$ \#3		
\bigcirc	\times	\times	STCF	A, (mem)	1 m 1,1 m 0	$\mathrm{m}_{1} \mathrm{~m}_{1} \mathrm{~m}_{1} \mathrm{~m}$		
					$0{ }^{0} 0{ }^{1} 1{ }^{0}$,	$1,1,0,0$		

Note : When bit num is specified by the A register, the value of the lower 4 bits of the A register is used. When the operand is a byte and the value of the lower 4 bits of bit num is from 8 to 15 , the operand value does not change.

Flags : | S |
| :---: |
| |
| |

$\mathrm{S}=$ No change
Z $=$ No change
$\mathrm{H}=$ No change
$\mathrm{V}=$ No change
$\mathrm{N}=$ No change
$\mathrm{C}=$ No change
Execution example: STCF 5,(100H)
When the contents of memory at address $100 \mathrm{H}=00 \mathrm{H}$ and the carry flag $=1$, execution sets the contents of memory at address 100 H to 00100000B (binary).

SUB dst, src

< Subtract >

Operation $: d s t \leftarrow d s t-s r c$
Description : Subtracts the contents of src from those of dst and loads the result to dst.

Details : Size Mnemonic Code

\bigcirc
SUB
r, \#

1,1	$\left.\mathrm{z}_{1} \mathrm{z}\right) 1$	${ }_{1}{ }^{\text {r }}$
$1,1,0,0,1,0,1,0$		
\#<7:0>		
\#<15:8>		
\#<23:16>		
\#<31:24>		

\bigcirc
SUB
R, (mem)

\bigcirc
○
SUB
(mem), R

1	m	z, z m	$\mathrm{m}_{1} \mathrm{~m}_{1} \mathrm{~m}_{1} \mathrm{~m}$
	0	$1,0,1$, R

$$
\times \quad \mathrm{SUB}<\mathrm{W}>\quad(\mathrm{mem}), \#
$$

$S=$ MSB value of the result is set.
$\mathrm{Z}=1$ is set when the result is 0 , otherwise 0 .
$\mathrm{H}=1$ is set when a borrow from bit 3 to bit 4 occurs as a result, otherwise 0 .
When the operand is 32 bits, an undefined value is set.
$\mathrm{V}=1$ is set when an overflow occurs as a result, otherwise 0 .
$\mathrm{N}=1$ is set.
$\mathrm{C}=1$ is set when a borrow from MSB occurs as a result, otherwise 0.

Execution example: SUB HL, IX
When the HL register $=7654 \mathrm{H}$ and the IX register $=5000 \mathrm{H}$, execution sets the HL register to 2654 H .

SWI num

< Software Interrupt >

Operation : 1) $\mathrm{XSP} \leftarrow \mathrm{XSP}-6$
2) $(\mathrm{XSP}) \leftarrow \mathrm{SR}$
3) $(\mathrm{XSP}+2) \leftarrow 32$ bit PC
4) $\mathrm{PC} \leftarrow$ (Address refer to vector + num $\times 4$)

Note: Address refer to vector is defined for each product.
Description : Saves to the stack area the contents of the status register and contents of the program counter which indicate the address next to the SWI instruction. Finally, jumps to vector is indicated address refer to vector.

Details :
Mnemonic Code

SWI [\#3] \quad| $1,1,1$ | 1 | 1 | $1^{\# 3}$ |
| :--- | :--- | :--- | :--- |

Note 1 : A value from 0 to 7 can be specified as the operand value. When the operand coding is omitted, SWI 7 is assumed.

Note 2 : The status register structure is as shown below.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SYSM	IFF2	IFF1	IFF0	MAX	RFP2	RFP1	RFP0	S	Z	"0"	H	"0"	V	N	C

Flags : | S |
| :---: |
| |
| |
| |

$\mathrm{S}=$ No change
Z $=$ No change
$\mathrm{H}=$ No change
$\mathrm{V}=$ No change
$\mathrm{N}=$ No change
C = No change

Execution example: SWI 5

When the stack pointer XSP $=100 \mathrm{H}$, the status register $=8800 \mathrm{H}$, executing the above instruction at memory address 8400 H writes the contents of the previous status register 8800 H in memory address 00 FAH , and the contents of the program counter 00008401 H in memory address 00 FCH , then jumps to address FFFF20H.

TSET num, dst
 < Test and Set >

Operation : Z flag \leftarrow inverted value of dst <num > dst $<$ num $>\leftarrow 1$

Description : Loads the inverted value of the bit num of dst to the Z flag. Then the bit num of dst is set to " 1 ".

Details :
Size Mnemonic Code

\bigcirc	\bigcirc	\times	TSET	\#4, r	1,1 z	r
					$0{ }_{0}, 0,1,1$	$1,0,0$
					$0,0,0,0$	\#, 4 ,
\bigcirc	\times	\times	TSET	\#3, (mem)	$1, \mathrm{~m}$ 1 1 1	$\mathrm{m}_{1} \mathrm{~m}_{1} \mathrm{~m}$
					$1,0,1,0$,	\# 3

$S=$ An undefined value is set.
$\mathrm{Z}=$ The inverted value of the $\mathrm{src}<$ num $>$ is set.
$\mathrm{H}=$ Set to 1
$\mathrm{V}=$ An undefined value is set.
$\mathrm{N}=$ Set to 0
$\mathrm{C}=$ No change

Execution example: When the contents of memory at address $100 \mathrm{H}=00100000 \mathrm{~B}$ (binary), TSET 3, (100H) execution sets the Z flag to 1 , the contents of memory at address $100 \mathrm{H}=00101000 \mathrm{~B}$ (binary).

UNLK dst

< Unlink >

Operation $\quad: \quad \mathrm{XSP} \leftarrow \mathrm{dst}, \mathrm{dst} \leftarrow(\mathrm{XSP}+)$
Description : Loads the contents of dst to the stack pointer XSP, then pops long word data from the stack area to dst. Used paired with the Link instruction.

Details :
Size Mnemonic Code
Byte Word Long word
$\times \quad \times \quad$ UNLK r
r

1, ${ }^{1}$, ${ }^{1}\left\\|^{0}\right\\|^{1}$	$\\|^{\text {r }}$ \\|

Flags : | S |
| :---: |
| |
| |

$\mathrm{S}=$ No change
Z $=$ No change
$\mathrm{H}=$ No change
$\mathrm{V}=$ No change
$\mathrm{N}=$ No change
C $=$ No change

Execution example: UNLK XIZ
As a result of executing this instruction after executing the Link instruction, the stack pointer XSP and the XIZ register revert to the same values they had before the Link instruction was executed. (For details of the Link instruction, see page 100)

XOR dst, src

< Exclusive OR >

Operation : dst $\leftarrow \mathrm{dst}$ XOR src
Description : Exclusive ors the contents of dst with those of src and loads the result to dst.
(Truth table)

A	B	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Details :
Size Mnemonic Code
Byte Word Long word\bigcirc
XOR
R, r

	$\\|^{\mathbf{r}}$,
$1,1,0,1,0$	R

XOR
r, \#

${ }_{1}{ }_{1} 1$	$\mathrm{z}_{1} \mathrm{z}$	1	
\#<7:0>			
\#<15:8>			
\#<23:16>			
\#<31:24>			

XOR
R, (mem)
\bigcirc
XOR
(mem), R

$$
\times \quad \mathrm{XOR}<\mathrm{W}>\quad(\mathrm{mem}), \#
$$

$1 \mathrm{l}^{1} \mathrm{~m}$	0	z	$\mathrm{m}_{1} \mathrm{~m}_{1}$
\#<15:8>			

$\mathrm{S}=\mathrm{MSB}$ value of the result is set.
$\mathrm{Z}=1$ is set when the result is 0 , otherwise 0 .
$\mathrm{H}=$ Reset to 0 .
$\mathrm{V}=1$ is set when the parity (number of 1 s) of dst is even as a result, otherwise 0 .
If the operand is 32 bits , an undefined value is set.
$\mathrm{N}=$ Cleared to 0.
$\mathrm{C}=$ Cleared to 0.

Execution example: XOR HL, IX
When the HL register $=7350 \mathrm{H}$ and the IX register $=3456 \mathrm{H}$, execution sets the HL register to 4706 H .

	0111	0011	0101	0000	\leftarrow	HL register (before execution)
XOR)	0011	0100	0101	0110	\leftarrow	IX register (before execution)
	0100	0111	0000	0110	\leftarrow	HL register (after execution)

XORCF num, src

< Exclusive OR Carry Flag >

Operation : CY \leftarrow CY XOR $\mathrm{src}<$ num $>$
Description : Exclusive ors the contents of the carry flag and bit num of src, and loads the result to the carry flag.

Details :

	Size		Mnemonic		Code
Byte	Word	Long word			
\bigcirc	\bigcirc	\times	XORCF	\#4, r	1,1 0 z 1 r 1
					0, 0 , $1,0,0,0,0,1,0$
\bigcirc	\bigcirc	\times	XORCF	A, r	
					$0{ }_{0}{ }^{0} \downarrow_{1} 1,0,1,0,1,0$
\bigcirc	\times	\times	XORCF	\#3, (mem)	
\bigcirc	\times	\times	XORCF	A, (mem)	1 m 1,1 $\mathrm{~m}_{1} \mathrm{~m}_{1} \mathrm{~m}_{1} \mathrm{~m}$ 0
					$0,0,1,0,1,0,1,0$

Note : When bit num is specified by the A register, the value of the lower 4 bits of the A register is used. When the operand is a byte and the value of the lower 4 bits of bit num is from 8 to 15 , the result is undefined.

$\mathrm{S}=$ No change
Z $=$ No change
$\mathrm{H}=$ No change
$\mathrm{V}=$ No change
$\mathrm{N}=$ No change
$\mathrm{C}=$ The value obtained by exclusive or-ing the contents of the carry flag with those of bit num of src is set.

Execution example: XORCF 6,(100H)
When the contents of memory at address $100 \mathrm{H}=01000000 \mathrm{~B}$ (binary) and the carry flag $=1$, execution sets the carry flag to 0 .

ZCF

$$
<\text { Zero flag to Carry Flag > }
$$

Operation : CY \leftarrow inverted value of Z flag
Description : Loads the inverted value of the Z flag to the carry flag.

Details :

$$
\text { Mnemonic } \quad \text { Code }
$$

ZCF
$0,0,0,1,0{ }_{0}^{0}{ }^{1} 1,1$

$\mathrm{S}=$ No change
$\mathrm{Z}=$ No change
$\mathrm{H}=$ An undefined value is set.
$\mathrm{V}=$ No change
$\mathrm{N}=$ Reset to 0 .
$\mathrm{C}=$ The inverted value of the Z flag is set.

Execution example: ZCF
When the Z flag $=0$, execution sets the carry flag to 1.

