Asia-Pacific
English
简体中文
繁體中文
한국어
日本語
Americas
English
Europe (EMEA)
English



型號查詢

交叉搜尋

About information presented in this cross reference

The information presented in this cross reference is based on TOSHIBA's selection criteria and should be treated as a suggestion only. Please carefully review the latest versions of all relevant information on the TOSHIBA products, including without limitation data sheets and validate all operating parameters of the TOSHIBA products to ensure that the suggested TOSHIBA products are truly compatible with your design and application.
Please note that this cross reference is based on TOSHIBA's estimate of compatibility with other manufacturers' products, based on other manufacturers' published data, at the time the data was collected.
TOSHIBA is not responsible for any incorrect or incomplete information. Information is subject to change at any time without notice.

關鍵字搜尋

參數搜尋

線上庫存查詢跟購買

Toshiba’s New SiC MOSFETs Delivers Low On-Resistance and Significantly Reduced Switching Loss

July 22, 2022

Toshiba Electronic Devices & Storage Corporation

KAWASAKI--Toshiba Electronic Devices & Storage Corporation (“Toshiba”) has developed silicon carbide (SiC) MOSFETs[1] with low on-resistance and significantly reduced switching loss—about 20% lower than in its second-generation SiC MOSFETs.

Power devices are essential components for managing and reducing power consumption in all kinds of electronic equipment, and for achieving a carbon neutral society. SiC is widely seen as the next generation material for power devices, as it delivers higher voltages and lower losses than silicon. While SiC power devices are now mainly utilized in inverters for trains, wider application is on the horizon, in vehicle electrification and the miniaturization of industrial equipment. However, the adoption and market growth of SiC devices have been held back by reliability issues.

Toshiba has solved this problem by adopting a structure in which a Schottky Barrier Diode (SBD) is placed in parallel with the PN diode inside the SiC MOSFET of the second-generation product. However, this created a new problem, whereby the performance of the MOSFET deteriorates when it includes an SBD cell that does not operate as a MOSFET. Specifically, there is an increase in the on-resistance per unit area (RonA) and in the performance index that indicates the on-resistance and high speed (Ron*Qgd). A further problem was a higher unit cost from increasing the chip area to reduce on-resistance (Ron).

Toshiba has now developed a device structure that reduces RonA while including an SBD. Spread resistance (Rspread)[2] is reduced and the SBD current is increased by injecting nitrogen into the bottom of the wide p-type diffusion region (p-well) of the SiC MOSFET. Toshiba also reduced the JFET[3] region and injected nitrogen to reduce feedback capacitance and JFET resistance. As a result, feedback capacitance was reduced without increasing RonA. Toshiba prototyped and confirmed that this device structure reduces RonA by 43%[4], Ron*Qgd by 80%[5], and switching loss (from switching on and off) by about 20%[6], compared to its second-generation products. Stable operation without fluctuation of RonA was also secured by optimized positioning of the SBD.

Details of the achievement were reported at the PCIM Europe 2022, an international conference of power devices held in Nuremberg, Germany and online on May 12. Toshiba plans to start mass production of third generation SiC MOSFETs with the new technology in late August this year.

[1] MOSFET: metal-oxide-semiconductor field-effect transistor
[2] Spread resistance: The diffusion resistance at the bottom of the p-well.
[3] JFET: Junction Field Effect Transistor
[4] Comparison of the new 1.2kV SiC MOSFET when RonA is set to 1 in the second-generation SiC MOSFET. (Toshiba test results)
[5] Comparison of the new 1.2kV SiC MOSFET when Ron*Qgd is set to 1 in the second-generation SiC MOSFET. (Toshiba test results)
[6] Comparison of the new 1.2kV SiC MOSFET and the second-generation SiC MOSFET. (Toshiba test results)

The structure of Toshiba’s new SiC MOSFET

The structure of Toshiba’s new SiC MOSFET

Reduction of RonA and Ron*Qgd (Toshiba test results)

(a) Comparison of R<sub>on</sub>A between the new 1.2kV SiC MOSFETs and the latest generation of SiC MOSFETs of other companies when R<sub>on</sub>A of its second-generation SiC MOSFETs is taken as 1.
(a) Comparison of RonA between the new 1.2kV SiC MOSFETs and the latest generation of SiC MOSFETs of other companies when RonA of its second-generation SiC MOSFETs is taken as 1.
(b) Comparison of R<sub>on</sub>*Q<sub>gd</sub> between the new 1.2kV SiC MOSFETs and the latest generation of SiC MOSFETs of other companies when R<sub>on</sub>*Q<sub>gd</sub> of its second-generation SiC MOSFETs is taken as 1.
(b) Comparison of Ron*Qgd between the new 1.2kV SiC MOSFETs and the latest generation of SiC MOSFETs of other companies when Ron*Qgd of its second-generation SiC MOSFETs is taken as 1.

*Company names, product names, and service names may be trademarks of their respective companies.
*Information in this document, including product prices and specifications, content of services and contact information, is current on the date of the announcement but is subject to change without prior notice.