Part Number Search

Cross Reference Search

About information presented in this cross reference

The information presented in this cross reference is based on TOSHIBA's selection criteria and should be treated as a suggestion only. Please carefully review the latest versions of all relevant information on the TOSHIBA products, including without limitation data sheets and validate all operating parameters of the TOSHIBA products to ensure that the suggested TOSHIBA products are truly compatible with your design and application.
Please note that this cross reference is based on TOSHIBA's estimate of compatibility with other manufacturers' products, based on other manufacturers' published data, at the time the data was collected.
TOSHIBA is not responsible for any incorrect or incomplete information. Information is subject to change at any time without notice.

Keyword Search

Parametric Search

Stock Check & Purchase

Select Product Categories

Select Application

Find everything you need for your next product design. Simply select an application and click through to the block diagram to discover our semiconductor solutions.

New Products / News

Innovation Centre

At the Toshiba Innovation Centre we constantly strive to inspire you with our technologies and solutions. Discover how to place us at the heart of your innovations.

Chapter III : Transistors : What are RC-IGBTs and IEGTs?

Reverse conductive IGBT : RC-IGBT

  • The structure of the RC-IGBT is shown in Fig. 3-16 (a). A diode is formed by making a part of the p-type layer, which is the collector of the IGBT, n-type. This diode has the same function as FWD * 1, which is generally inserted in the IGBT.
  • With the introduction of thin wafer technology, it became possible to commercialize this configuration. Since the diode and the IGBT are one chip, , it is easy to assemble. Because it is difficult to control the performance of the diode and the IGBT separately, the RC-IGBT is unsuitable for certain applications.

*1: FWD—Free-Wheeling Diode. Generally, it is used to send reflux current generated by a reactor.

Structure of RC-IGBT
Fig. 3-16(a) Structure of RC-IGBT

Injection-enhanced gate transistor : IEGT

  • Generally, in the high-voltage IGBT, it is difficult to obtain low VCE (sat) characteristics because the carrier concentration of the drift layer (n-type layer) on the emitter side is low.
  • The IEGT was developed to obtain low VCE (sat) performance at high withstand voltage (generally 1200 V or higher).
  • Fig. 3-16(b) shows the IEGT’s structure and principle.
  • It has a trench gate structure. Drawing out of the gate electrode is thinned out.  As a result, carriers are accumulated just under the thinned gate electrode, increasing the carrier concentration on the emitter side.
  • This high carrier density decreases resistance of drift layer, and makes VCE (sat) low.
Structure and carrier density of IEGT
Fig. 3-16(b) Structure and carrier density of IEGT

Chapter III : Transistors

Related information

A new window will open