This webpage doesn't work with Internet Explorer. Please use the latest version of Google Chrome, Microsoft Edge, Mozilla Firefox or Safari.
型號需要超過三個文字以上
The information presented in this cross reference is based on TOSHIBA's selection criteria and should be treated as a suggestion only. Please carefully review the latest versions of all relevant information on the TOSHIBA products, including without limitation data sheets and validate all operating parameters of the TOSHIBA products to ensure that the suggested TOSHIBA products are truly compatible with your design and application.
Please note that this cross reference is based on TOSHIBA's estimate of compatibility with other manufacturers' products, based on other manufacturers' published data, at the time the data was collected.
TOSHIBA is not responsible for any incorrect or incomplete information. Information is subject to change at any time without notice.
型號需要超過三個文字以上
圖A顯示了常規IGBT的截面結構以及N基極區域中的載流子分佈。從集電極到發射極,載流子濃度在整個N基極區域單調降低。為了增加IGBT的集電極-發射極電壓,在集電極和發射極之間必須有一個深N基極區。但是,深的N基區會導致載流子濃度降低。結果,電阻的增加導致電壓降的增加,從而導致導通電壓的增加。
以下圖B顯示了IEGT的橫截面結構和載流子分佈。 IEGT具有類似於IGBT的結構,具有比IGBT更深,更寬的溝槽柵極。這種結構增加了柵極到發射極的電阻,從而防止載流子穿過發射極。因此,在N基極區域中的發射極附近,載流子濃度提高。由於此現象與載流子注入和累積具有相同的作用,因此稱為注入增強(IE)效應。即使在高集電極-發射極額定電壓下,這種溝槽柵結構也有助於減少電壓降的增加。
由於發射極附近的載流子濃度低,因此集電極-發射極電壓額定值的增加導致導通電壓的增加。
發射極附近的載流子濃度在發射極附近增強。因此,電子注入增加,從而降低了導通電壓。