Asia-Pacific
English
简体中文
繁體中文
한국어
日本語
Americas
English
Europe (EMEA)
English



型號查詢

交叉搜尋

About information presented in this cross reference

The information presented in this cross reference is based on TOSHIBA's selection criteria and should be treated as a suggestion only. Please carefully review the latest versions of all relevant information on the TOSHIBA products, including without limitation data sheets and validate all operating parameters of the TOSHIBA products to ensure that the suggested TOSHIBA products are truly compatible with your design and application.
Please note that this cross reference is based on TOSHIBA's estimate of compatibility with other manufacturers' products, based on other manufacturers' published data, at the time the data was collected.
TOSHIBA is not responsible for any incorrect or incomplete information. Information is subject to change at any time without notice.

關鍵字搜尋

參數搜尋

線上庫存查詢跟購買

選擇應用

Find everything you need for your next product design. Simply select an application and click through to the block diagram to discover our semiconductor solutions.

新產品/新聞

使用東芝的SiC MOSFET開啟電源的新大門

SiC MOSFET支持小型化、低損耗電源

解決環境和能源問題是一個重要的全球性問題。隨著電力需求持續升高,對節能的呼聲以及對高效、緊湊型電力轉換系統的需求也迅速增加。

功率半導體具有將直流電轉換成交流電的逆變器功能,將交流電轉換成直流電的轉換器功能,還具有改變交流電頻率的變頻器功能。這些重要器件有助於實現各類產品和不同領域的節能。

相比于傳統的矽(Si)MOSFET和IGBT產品,基於全新碳化矽(SiC)材料的功率MOSFET具有耐高壓,高速開關,低導通電阻性能。除減少產品尺寸外,該類產品可極大降低功率損耗。

SiC MOSFETs support downsizing and low-loss power supplies

Introduction to 2nd Generation SiC MOSFETs

Features of 2nd Generation SiC MOSFETs

由於碳化矽(SiC)的介電擊穿強度大約是矽(Si)的10倍,因此SiC功率器件可以提供高耐壓和低壓降。與相同耐壓條件下的Si相比,SiC器件中的單位面積導通電阻更低。

使用SiC MOSFET的好處是什麼?

使用SiC MOSFET提高效率的應用示例介紹

SiC MOSFET參考設計簡介

隨著工業領域裡商品化和標準化進展,越來越多的案例將基於器件選擇和最優電路解決方案的高度通用參考設計用作有效的開發設計方法。

本章節提供採用SiC MOSFET的參考設計,以便能快速推進您的設備設計進程。

3-Phase AC 400 V Input PFC Converter Reference Design

3相AC 400V輸入PFC轉換器

Toshiba's reference design of a power factor correction (PFC) circuit for 3-phase 400 V AC inputs illustrates how to improve power supply efficiency using 2nd Generation SiC MOSFETs. The design achieves a power conversion efficiency of 97% and a power factor of 0.99 or more. It is a reference design for the PFC section (gate drive circuit, sensor circuit, output power switch) of high-power converters such as electric vehicle (EV) charging stations. 
The growing adoption of EVs has increased the demand for power conversion systems that must also be highly efficient and compact. This Toshiba reference design provides an excellent starting point for the PFC stage of power converters. It can be used as the basis for both prototyping and developing your application, helping it reach its full potential.

5 kW Isolated Bidirectional DC-DC Converter Reference Design

5kW隔離式雙向DC-DC轉換器

The 5kW Isolated Bidirectional DC-DC Converter reference design from Toshiba shows how to improve a power supply design's efficiency using 2nd Generation SiC MOSFETs. The design uses the dual active bridge (DAB) method, one of the most popular topologies for such high-power converters. The DAB topology has full bridges on both sides, allowing the direction and amount of power to be controlled by adjusting the phase difference between the left and right bridge circuits.  This highly versatile reference design forms a starting point for developing and prototyping high-power conversion applications, such as electric vehicle charging stations and inverters in solar power generators. 

常見問題

聯繫我們