SiC Power Devices

Silicon carbide (SiC) is a semiconductor material with a high electric breakdown field, saturated electron velocity, and thermal conductivity, compared to silicon (Si). Therefore, when used in semiconductor devices, they achieve higher voltage resistance, higher-speed switching, and lower ON-resistance compared to Si devices. This is expected to be a next-generation low-loss device that contribute to lower power consumption and system downsizing.


Toshiba’s 1200V SiC MOSFETs offers high-speed switching and low ON-resistance making it excellent for high-power, high-efficiency industrial power supplies, low-loss solar inverters and UPS.
SiC Schottky Barrier Diodes
Toshiba offers 650-V silicon carbide Schottky barrier diodes (SiC SBDs) with a rated current of 2 A to 10 A.
SiC MOSFETs Modules
Our SiC MOSFETs modules have high-speed switching properties, and use SiC (silicon carbide), a new material optimized for low-loss and miniaturization of power converters for the industry, such as inverters and converters for railway vehicles and photovoltaic inverters.
3rd generation Silicon Carbide(SiC) MOSFETs
Toshiba's 3rd generation Silicon Carbide (SiC) MOSFETs introduces a selection of both 650V and 1200V voltage products. In common with 2nd generations, Toshiba's newest generation of MOSFETs include a built-in SiC Schottky Barrier Diode (SBD) with a low forward voltage (VF) of -1.35V (typ.), placed in parallel with the PN diode in the SiC MOSFETs, to suppress fluctuation in RDS(on) thereby enhancing reliability. Furthermore, Toshiba’s advanced SiC process[1] has greatly improved our on-resistance per unit area RonA, and the performance index Ron*Qgd, which indicates switching characteristics, compared to 2nd generation products. Also, it has easy to design gate drive circuit, and you can prevent malfunctions due to switching noise.
Toshiba's 3rd generation SiC MOSFETs provides lower power consumption and supports higher power density for applications such as switching power supplies (servers for data centers, communication equipment, etc.), uninterruptible power supplies (UPS), PV inverters, EV charging stations, etc.
3rd generation Silicon Carbide(SiC) MOSFETs
3rd generation SiC Schottky barrier diode (SBD)
It adopts the new schottky metal, and it is equipped with 3rd generation SiC SBD chip, which optimized junction barrier schottky (JBS) structure of 2nd generation. As a result, we have achieved industry-leading lowest forward voltage 1.2 V (Typ.), which is 17 % lower than that of the 2nd generation 1.45 V (Typ.). The 3rd generation products have improved the trade-offs between forward voltage and total capacitive charge, and the trade-offs between forward voltage and reverse current compared with the 2nd generation products. This reduces power dissipation and contributes to high efficiency of equipment.
3rd generation SiC Schottky barrier diode (SBD)
Features of SiC MOSFET Modules
Our SiC MOSFET modules achieve high reliability, wide gate-to-source voltage, and high gate threshold voltage. In addition, the high heat tolerance and low inductance package brings out the performance of SiC sufficiently.
Features of Toshiba SiC MOSFET Modules
Compared to IGBT module, the low-loss characteristics of SiC MOSFET module can reduce the total loss (switching loss + conduction loss). High-speed switching and low-loss operation also reduce the size of the filter and transformer and heat sink, enabling a compact, lightweight system.
Improved JBS structure to reduce the leakage current and increase the surge current capability
The improved JBS structure has been applied to improve the leakage current of the SBD and the surge current capacity.
Diodes / SiC Schottky Barrier Diodes
High withstand voltage (reverse voltage) characteristics of SiC SBDs
A device with a high breakdown voltage has been realized with dielectric breakdown field strength nearly 10 times higher than that of Si.
Diodes / SiC Schottky Barrier Diodes
SiC SBD that achieves low switching losses
By using SiC, a device with high withstand voltage and low switching loss (low reverse recovery charge) has been realized.
Diodes / SiC Schottky Barrier Diodes
Contributes to high efficiency and low loss of high output power supply
Significantly reduced recovery loss compared to FRD: fast recovery diodes
Diodes / SiC Schottky Barrier Diodes


Reference Design

PCB Photo (example)
1.6 kW Server Power Supply (Upgraded)
Thanks to Toshiba’s latest power devices and digital isolator, this 1U size and 12 V output 1.6 kW server power supply achieves higher efficiency at whole load than the existing reference design which uses the same circuit topology. Design files and guides for circuit design and operation are available as reference design.
3-Phase Inverter Using SiC MOSFET
This reference design provides design guide, data and other contents of the 3-phase inverter using 1200 V SiC MOSFET. It drives AC 440V motors.
Image of 5 kW Isolated Bidirectional DC-DC Converter.
5 kW Isolated Bidirectional DC-DC Converter
This reference design provides design guide, data and other contents of 5kW Isolated Bidirectional DC-DC Converter using dual active bridge (DAB) conversion method with 1200V SiC MOSFETs.
DC-DC Converter
images of 3-phase AC 400V Input PFC converter.
3-Phase AC 400V Input PFC Converter
This reference design provides design guide, data and other contents of 4 kW 3-phase AC 400 V input PFC converter using 3-phase totem-pole topology with 1200 V SiC MOSFET.

News / Latest information



Technical inquiry

Contact us

Contact us

Frequently Asked Questions

A new window will open