MOSFET Performance Improvement: Approach to Low RDS(ON)

We are pursuing the following countermeasures for the biggest problem of MOSFET: ”How to effectively reduce on-resistance by effectively utilizing the element area“

(1) High voltage: Reduce resistance of Rdrift by the advanced super-junction process explained on the next page.
(2) Low voltage: Minimize resistance of Rch by fine patterning of trench structure and reduce resistance of Rsub by thinning wafer

Summary of approach to low ON resistance
Factors for ON resistance of MOSFET
Fig. 3-8 Factors for ON resistance of MOSFET

Chapter III : Transistors

Types of Transistors
Bipolar Transistors (BJTs)
Bias Resistor Built-in Transistors (BRTs)
Junction Field-Effect Transistors (JFETs)
Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)
Differences between BJT and MOSFET
Structure and Operation of MOSFET
MOSFET Performance Improvement: Decision Factors of RDS(ON)
MOSFET Performance Improvement: Super-Junction MOSFETs (SJ-MOS)
Summary of MOSFET Features by Structure
Performance of MOSFETs: Drain Current and Power Dissipation
Performance of MOSFETs: Avalanche Capability
Performance of MOSFETs: Characteristic of Capacitance
Performance of MOSFETs: Safe Operating Area(or Area of Safe Operation)
Insulated-Gate Bipolar Transistors (IGBTs)
Operation of Insulated-Gate Bipolar Transistors (IGBTs)
Performance Improvement of IGBTs: Evolution of Vertical Design
What are RC-IGBTs and IEGTs?
Application of IGBTs
Comparison of Forward Characteristics of IGBTs and MOSFETs
Comparison of Transistors by Structure
Datasheets of MOSFET: Maximum Ratings
Datasheets of MOSFET: Electrical Characteristics
Datasheets of MOSFET: Capacitance and Switching Characteristics
Datasheets of MOSFET: Body Diode

Related information

開啟新視窗